Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David K. Shintani is active.

Publication


Featured researches published by David K. Shintani.


The Plant Cell | 2007

Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs

Andreas Wachter; Meral Tunc-Ozdemir; Beth C. Grove; Pamela J. Green; David K. Shintani; Ronald R. Breaker

The most widespread riboswitch class, found in organisms from all three domains of life, is responsive to the vitamin B1 derivative thiamin pyrophosphate (TPP). We have established that a TPP-sensing riboswitch is present in the 3′ untranslated region (UTR) of the thiamin biosynthetic gene THIC of all plant species examined. The THIC TPP riboswitch controls the formation of transcripts with alternative 3′ UTR lengths, which affect mRNA accumulation and protein production. We demonstrate that riboswitch-mediated regulation of alternative 3′ end processing is critical for TPP-dependent feedback control of THIC expression. Our data reveal a mechanism whereby metabolite-dependent alteration of RNA folding controls splicing and alternative 3′ end processing of mRNAs. These findings highlight the importance of metabolite sensing by riboswitches in plants and further reveal the significance of alternative 3′ end processing as a mechanism of gene control in eukaryotes.


Plant Physiology | 2009

Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis

Meral Tunc-Ozdemir; Gad Miller; Luhua Song; James Kim; Ahmet Sodek; Shai Koussevitzky; Amarendra Narayan Misra; Ron Mittler; David K. Shintani

Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative treatments, accumulated thiamin and TPP. Moreover, the accumulation of these compounds in plants subjected to oxidative stress was accompanied by enhanced expression of transcripts encoding thiamin biosynthetic enzymes. When supplemented with exogenous thiamin, wild-type plants displayed enhanced tolerance to oxidative stress induced by paraquat. Thiamin application was also found to protect the reactive oxygen species-sensitive ascorbate peroxidase1 mutant from oxidative stress. Thiamin-induced tolerance to oxidative stress was accompanied by decreased production of reactive oxygen species in plants, as evidenced from decreased protein carbonylation and hydrogen peroxide accumulation. Because thiamin could protect the salicylic acid induction-deficient1 mutant against oxidative stress, thiamin-induced oxidative protection is likely independent of salicylic acid signaling or accumulation. Taken together, our studies suggest that thiamin and TPP function as important stress-response molecules that alleviate oxidative stress during different abiotic stress conditions.


Plant Physiology and Biochemistry | 2002

Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis

Yoseph Tsegaye; David K. Shintani; Dean DellaPenna

Abstract The enzyme p -hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of p -hydroxyphenylpyruvate to homogentisic acid (HGA), the aromatic precursor for the biosynthesis of vitamin E (α-tocopherol) and plastoquinone. In order to determine if increased HPPD activity could positively impact tocopherol yields, transgenic plants were generated that overexpressed the gene encoding Arabidopsis HPPD. Transgenic plants exhibiting high levels of HPPD expression were identified by increased tolerance to a competitive inhibitor of HPPD, the herbicide sulcotrione. HPPD gene expression in these transgenic lines, as determined at the RNA, protein and activity levels, was at least 10-fold higher than that of wild-type plants. Subsequent tocopherol analysis of leaf and seed material revealed that the increased HPPD expression resulted in up to a 37% increase in leaf tocopherol levels and a 28% increase in seed tocopherol levels relative to control plants. These results demonstrate that HPPD activity, and likely HGA levels, are at least one factor limiting the production of tocopherols in photosynthetic and non-photosynthetic plant tissues.


Genetics | 2007

Single Nucleotide Polymorphisms and Linkage Disequilibrium in Sunflower

Judith M. Kolkman; Simon Berry; Alberto Leon; Mary B. Slabaugh; Shunxue Tang; Wenxiang Gao; David K. Shintani; John M. Burke; Steven J. Knapp

Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression−the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines (θ = 0.0094) than wild populations (θ = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome (∼3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.


FEBS Letters | 2002

The role of 2‐methyl‐6‐phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803

David K. Shintani; Zigang Cheng; Dean DellaPenna

A putative 2‐methyl‐6‐phytylbenzoquinone (MPBQ) methyltransferase gene, SLL0418, was identified from the Synechocystis PCC6803 genome based on its homology to previously characterized γ‐tocopherol methyltransferases. Genetic and biochemical evidence confirmed open reading frame (ORF) SLL0418 encodes a MPBQ methyltransferase. An SLL0418 partial knockout mutant accumulated β‐tocopherol with no effect in the overall tocopherol content of the cell. In vitro assays of the SLL0418 gene expressed in Escherichia coli showed the enzyme efficiently catalyzes methylation of ring carbon 3 of MPBQ. In addition, the enzyme also catalyzes the methylation of ring carbon 3 of 2‐methyl‐6‐solanylbenzoquinol in the terminal step of plastoquinone biosynthesis.


Plant Physiology | 1997

Antisense expression and overexpression of biotin carboxylase in tobacco leaves

David K. Shintani; Keith R. Roesler; Basil S. Shorrosh; Linda Savage; John B. Ohlrogge

The plastid acetyl-coenzyme A carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis and in most plants is present as a heteromeric complex of at least four different protein subunits: the biotin carboxylase (BC), the biotin carboxyl carrier protein, and the [alpha] and [beta] subunits of the carboxyltransferase. To gain insight into the subunit organization of this heteromeric enzyme complex and to further evaluate the role of ACCase in regulating fatty acid synthesis, BC expression was altered in transgenic plants. Tobacco (Nicotiana tabacum) was transformed with antisense-expression and overexpression tobacco BC constructs, which resulted in the generation of plants with BC levels ranging from 20 to 500% of wild-type levels. Tobacco plants containing elevated or moderate decreases in leaf BC were phenotypically indistinguishable from wild-type plants. However, plants with less than 25% of wild-type BC levels showed severely retarded growth when grown under low-light conditions and a 26% lower leaf fatty acid content than wild-type plants. A comparison of leaf BC and biotin carboxyl carrier protein levels in plants with elevated and decreased BC expression revealed that these two subunits of the plastid ACCase are not maintained in a strict stoichiometric ratio.


Plant Molecular Biology | 2007

Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis

Imad Ajjawi; Miguel A. Rodriguez Milla; John C. Cushman; David K. Shintani

Thiamin pyrophosphate (TPP) is an essential enzyme cofactor required for the viability of all organisms. Whether derived from exogenous sources or through de novo synthesis, thiamin must be pyrophosphorylated for cofactor activation. The enzyme thiamin pyrophosphokinase (TPK) catalyzes the conversion of free thiamin to TPP in plants and other eukaryotic organisms and is central to thiamin cofactor activation. While TPK activity has been observed in a number of plant species, the corresponding gene/protein has until now not been identified or characterized for its role in thiamin metabolism. Here we report the functional identification of two Arabidopsis TPK genes, AtTPK1 and AtTPK2 and the enzymatic characterization of the corresponding proteins. AtTPK1 and AtTPK2 are biochemically redundant cytosolic proteins that are similarly expressed throughout different plant tissues. The essential nature of TPKs in plant metabolism is reflected in the observation that while single gene knockouts of either AtTPK1 or AtTPK2 were viable, the double mutant possessed a seedling lethal phenotype. HPLC analysis revealed the double mutant is nearly devoid of TPP and instead accumulates the precursor of the TPK reaction, free thiamin. These results suggest that TPK activity provides the sole mechanism by which exogenous and de novo derived thiamin is converted to the enzyme cofactor TPP.


Plant Signaling & Behavior | 2013

Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

Satinder K. Gidda; Samantha C. Watt; Jillian Collins-Silva; Aruna Kilaru; Vincent Arondel; Olga Yurchenko; Patrick J. Horn; Christopher N. James; David K. Shintani; John B. Ohlrogge; Kent D. Chapman; Robert T. Mullen; John M. Dyer

While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.


Phytochemistry | 2012

Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism

Jillian Collins-Silva; Aise Taban Nural; Amanda Skaggs; Deborah J. Scott; Upul Hathwaik; Rebekah Woolsey; Kathleen M. Schegg; Colleen M. McMahan; Maureen C. Whalen; Katrina Cornish; David K. Shintani

Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer.


Phytochemistry | 2012

Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue

Grisel Ponciano; Colleen M. McMahan; Wenshuang Xie; Gerard R. Lazo; Terry A. Coffelt; Jillian Collins-Silva; Aise Nural-Taban; Martin Gollery; David K. Shintani; Maureen C. Whalen

Natural rubber biosynthesis in guayule (Parthenium argentatum Gray) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced, was investigated. A total of 11,748 quality expressed sequence tags (ESTs) were obtained. The vast majority of ESTs encoded proteins that are similar to stress-related proteins, whereas those encoding rubber biosynthesis-related proteins comprised just over one percent of the ESTs. Sequence information derived from the ESTs was used to design primers for quantitative analysis of the expression of genes that encode selected enzymes and proteins with potential impact on rubber biosynthesis in field-grown guayule plants, including 3-hydroxy-3-methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, squalene synthase, small rubber particle protein, allene oxide synthase, and cis-prenyl transferase. Gene expression was studied for field-grown plants during the normal course of seasonal variation in temperature (monthly average maximum 41.7 °C to minimum 0 °C, from November 2005 through March 2007) and rubber transferase enzymatic activity was also evaluated. Levels of gene expression did not correlate with air temperatures nor with rubber transferase activity. Interestingly, a sudden increase in night temperature 10 days before harvest took place in advance of the highest CPT gene expression level.

Collaboration


Dive into the David K. Shintani's collaboration.

Top Co-Authors

Avatar

Katrina Cornish

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Colleen M. McMahan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean Dellapenna

Nevada System of Higher Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maureen C. Whalen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Wenshuang Xie

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Dean DellaPenna

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge