Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Kowalski is active.

Publication


Featured researches published by David Kowalski.


Cell | 1988

The ease of DNA unwinding as a determinant of initiation at yeast replication origins

Robert M. Umek; David Kowalski

We have localized the DNA sequence that facilitates unwinding of a yeast replication origin, the H4 ARS. The readily unwound sequence lies adjacent to the previously characterized consensus core sequence of the ARS. Unwinding is detected through the formation of a single-strand-specific nuclease hypersensitive site in H4 ARS mutant derivatives present on supercoiled plasmids. Linker-scanning and linker-deletion derivatives exhibit wild-type nuclease hypersensitivity and ARS function, while large external deletions reduce or eliminate nuclease detectable unwinding and origin function. ARS unwinding and origin function can be rescued in the deletion mutants by inserting a biologically unrelated sequence with DNA unwinding properties similar to a functional ARS. The data clarify the nature of DNA sequence requirements in the ARS by suggesting that small substitutions, insertions, and deletions are tolerated in the region flanking the consensus core sequence because they do not significantly alter the unwinding properties of the region.


Molecular and Cellular Biology | 1999

Activation of Silent Replication Origins at Autonomously Replicating Sequence Elements near the HML Locus in Budding Yeast

Marija Vujcic; Charles A. Miller; David Kowalski

ABSTRACT In the budding yeast, Saccharomyces cerevisiae, replicators can function outside the chromosome as autonomously replicating sequence (ARS) elements; however, within chromosome III, certain ARSs near the transcriptionally silent HML locus show no replication origin activity. Two of these ARSs comprise the transcriptional silencers E (ARS301) and I (ARS302). Another, ARS303, resides betweenHML and the CHA1 gene, and its function is not known. Here we further localized and characterized ARS303and in the process discovered a new ARS, ARS320. BothARS303 and ARS320 are competent as chromosomal replication origins since origin activity was seen when they were inserted at a different position in chromosome III. However, at their native locations, where the two ARSs are in a cluster withARS302, the I silencer, no replication origin activity was detected regardless of yeast mating type, special growth conditions that induce the transcriptionally repressed CHA1 gene,trans-acting mutations that abrogate transcriptional silencing at HML (sir3, orc5), orcis-acting mutations that delete the E and I silencers containing ARS elements. These results suggest that, for theHML ARS cluster (ARS303, ARS320, and ARS302), inactivity of origins is independent of local transcriptional silencing, even though origins and silencers share keycis- and trans-acting components. Surprisingly, deletion of active replication origins located 25 kb (ORI305) and 59 kb (ORI306) away led to detection of replication origin function at theHML ARS cluster, as well as at ARS301, the E silencer. Thus, replication origin silencing at HML ARSs is mediated by active replication origins residing at long distances fromHML in the chromosome. The distal active origins are known to fire early in S phase, and we propose that their inactivation delays replication fork arrival at HML, providing additional time for HML ARSs to fire as origins.


Molecular Cell | 2010

Multiple Rad5 Activities Mediate Sister Chromatid Recombination to Bypass DNA Damage at Stalled Replication Forks

Eugen C. Minca; David Kowalski

DNA damage that blocks replication is bypassed in order to complete chromosome duplication and preserve cell viability and genome stability. Rad5, a PCNA polyubiquitin ligase and DNA-dependent ATPase in yeast, is orthologous to putative tumor suppressors and controls error-free damage bypass by an unknown mechanism. To identify the mechanism in vivo, we investigated the roles of Rad5 and analyzed the DNA structures that form during damage bypass at site-specific stalled forks present at replication origins. Rad5 mediated the formation of recombination-dependent, X-shaped DNA structures containing Holliday junctions between sister chromatids. Mutants lacking these damage-induced chromatid junctions were defective in resolving stalled forks, restarting replication, and completing chromosome duplication. Rad5 polyubiquitin ligase and ATPase domains both contributed to replication fork recombination. Our results indicate that multiple activities of Rad5 function coordinately with homologous recombination factors to enable replication template switch events that join sister chromatids at stalled forks and bypass DNA damage.


Cancer Research | 2005

Genome-Wide Screen Identifies Genes Whose Inactivation Confer Resistance to Cisplatin in Saccharomyces cerevisiae

Ruea-Yea Huang; Martha J. Eddy; Marija Vujcic; David Kowalski

To identify novel genes that mediate cellular resistance to cisplatin, we have screened the collection of Saccharomyces cerevisiae deletion strains. We have found reproducibly 22 genes/open reading frames (ORF), which when deleted, confer resistance to cisplatin at a concentration that is lethal to wild-type cells. Complementation of individual deletion strains with the corresponding wild-type gene abolished cisplatin resistance, confirming that specific gene deletions caused the resistance. Twenty of the genes/ORFs identified have not been previously linked to cisplatin resistance and belong to several distinct functional groups. Major functional groups encode proteins involved in nucleotide metabolism, mRNA catabolism, RNA-polymerase-II-dependent gene regulation and vacuolar transport systems. In addition, proteins that function in ubiquitination, sphingolipid biogenesis, cyclic AMP-dependent signaling, DNA repair, and genome stability are also associated with cisplatin resistance. More than half of the identified genes are known to have sequences or functional homology to mammalian counterparts. Some deletion strains are cross-resistant to selected cytotoxic agents whereas hypersensitive to others. The sensitivity of certain resistant strains to other cytotoxic agents suggests that our findings may point to particular drug combinations that can overcome resistance caused by inactivation of specific genes.


Nucleic Acids Research | 2003

WEB-THERMODYN: sequence analysis software for profiling DNA helical stability

Yanlin Huang; David Kowalski

WEB-THERMODYN analyzes DNA sequences and computes the DNA helical stability, i.e. the free energy required to unwind and separate the strands of the double helix. A helical stability profile across a selected DNA region or the entire sequence is generated by sliding-window analysis. WEB-THERMODYN can predict sites of low helical stability present at regulatory regions for transcription and replication and can be used to test the influence of mutations. The program can be accessed at: http://wings.buffalo.edu/gsa/dna/dk/WEBTHERMODYN/.


Molecular and Cellular Biology | 2001

DNA Replication Forks Pause at Silent Origins near the HML Locus in Budding Yeast

Yangzhou Wang; Marija Vujcic; David Kowalski

ABSTRACT Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 andARS302 function in transcriptional silencing mediated by the origin recognition complex (ORC) and a heterochromatin structure, while the functions of ARS303 and ARS320 are not known. In this work, we discovered replication fork pause sites at the HML ARS cluster and ARS301 by analyzing DNA replication intermediates from the chromosome via two-dimensional gel electrophoresis. The replication fork pause at the HML ARS cluster was independent of cis- andtrans-acting mutations that abrogate transcriptional silencing at HML. Deletion of the HML ARS cluster led to loss of the pause site. Insertion of a single, heterologous ARS (ARS305) in place of the HMLARS cluster reconstituted the pause site, as did multiple copies of DNA elements (A and B1) that bind ORC. The orc2-1 mutation, known to alter replication timing at origins, did not detectably affect the pause but activated the silent origin at the HML ARS cluster in a minority of cells. Delaying the time of fork arrival atHML led to the elimination of the pause sites at theHML ARS cluster and at the copy of ARS305inserted in place of the cluster. Loss of the pause sites was accompanied by activation of the silent origins in the majority of cells. Thus, replication fork movement near HML pauses at a silent origin which is competent for replication initiation but kept silent through Orc2p, a component of the replication initiator. Possible functions for replication fork pause sites in checkpoints, S-phase regulation, mating-type switching, and transcriptionally silent heterochromatin are discussed.


Cancer Research | 2007

Small Ubiquitin-Related Modifier Pathway Is a Major Determinant of Doxorubicin Cytotoxicity in Saccharomyces cerevisiae

Ruea-Yea Huang; David Kowalski; Hans Minderman; Nishant Gandhi; Erica S. Johnson

Development of drug resistance is a major challenge in cancer chemotherapy using doxorubicin. By screening the collection of Saccharomyces cerevisiae deletion strains to identify doxorubicin-resistant mutants, we have discovered that the small ubiquitin-related modifier (SUMO) pathway is a major determinant of doxorubicin cytotoxicity in yeast. Mutants lacking UBA2 (SUMO activating enzyme; E1), UBC9 (conjugating enzyme; E2), and ULP1 and ULP2 (desumoylation peptidases) are all doxorubicin resistant, as are mutants lacking MLP1, UIP3, and NUP60, which all interact with ULP1. Most informatively, mutants lacking the SUMO E3 ligase Siz1 are strongly doxorubicin resistant, whereas mutants of other SUMO ligases are either weakly resistant (siz2) or hypersensitive (mms21) to doxorubicin. These results suggest that doxorubicin cytotoxicity is regulated by Siz1-dependent sumoylation of specific proteins. Eliminating SUMO attachment to proliferating cell nuclear antigen or topoisomerase II does not affect doxorubicin cytotoxicity, whereas reducing SUMO attachment to the bud neck-associated septin proteins has a modest effect. Consistent with these results, doxorubicin resistance in the siz1Delta strain does not seem to involve an effect on DNA repair. Instead, siz1Delta cells accumulate lower intracellular levels of doxorubicin than wild-type (WT) cells, suggesting that they are defective in doxorubicin retention. Although siz1Delta cells are cross-resistant to daunorubicin, they are hypersensitive to cisplatin and show near WT sensitivity to other drugs, suggesting that the siz1Delta mutation does not cause a general multidrug resistance phenotype. Cumulatively, these results reveal that SUMO modification of proteins mediates the doxorubicin cytotoxicity in yeast, at least partially, by modification of septins and of proteins that control the intracellular drug concentration.


Nucleic Acids Research | 2011

Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation

Eugen C. Minca; David Kowalski

The integrity of the genome is threatened by DNA damage that blocks the progression of replication forks. Little is known about the genomic locations of replication fork stalling, and its determinants and consequences in vivo. Here we show that bulky DNA damaging agents induce localized fork stalling at yeast replication origins, and that localized stalling is dependent on proximal origin activity and is modulated by the intra–S–phase checkpoint. Fork stalling preceded the formation of sister chromatid junctions required for bypassing DNA damage. Despite DNA adduct formation, localized fork stalling was abrogated at an origin inactivated by a point mutation and prominent stalling was not detected at naturally-inactive origins in the replicon. The intra–S–phase checkpoint contributed to the high-level of fork stalling at early origins, while checkpoint inactivation led to initiation, localized stalling and chromatid joining at a late origin. Our results indicate that replication forks initially encountering a bulky DNA adduct exhibit a dual nature of stalling: a checkpoint-independent arrest that triggers sister chromatid junction formation, as well as a checkpoint-enhanced arrest at early origins that accompanies the repression of late origin firing. We propose that the initial checkpoint-enhanced arrest reflects events that facilitate fork resolution at subsequent lesions.


Molecular Pharmacology | 2008

Dysregulation of purine nucleotide biosynthesis pathways modulates cisplatin cytotoxicity in Saccharomyces cerevisiae.

David Kowalski; Lakshmi Pendyala; Bertrand Daignan-Fornier; Stephen B. Howell; Ruea-Yea Huang

We found previously that inactivation of the FCY2 gene, encoding a purine-cytosine permease, or the HPT1 gene, encoding the hypoxanthine guanine phosphoribosyl transferase, enhances cisplatin resistance in yeast cells. Here, we report that in addition to fcy2Δ and hpt1Δ mutants in the salvage pathway of purine nucleotide biosynthesis, mutants in the de novo pathway that disable the feedback inhibition of AMP and GMP biosynthesis also enhanced cisplatin resistance. An activity-enhancing mutant of the ADE4 gene, which constitutively synthesizes AMP and excretes hypoxanthine, and a GMP kinase mutant (guk1), which accumulates GMP and feedback inhibits Hpt1 function, both enhanced resistance to cisplatin. In addition, overexpression of the ADE4 gene in wild-type cells, which increases de novo synthesis of purine nucleotides, also resulted in elevated cisplatin resistance. Cisplatin cytotoxicity in wild-type cells was abolished by low concentration of extracellular purines (adenine, hypoxanthine, and guanine) but not cytosine. Inhibition of cytotoxicity by exogenous adenine was accompanied by a reduction of DNA-bound cisplatin in wild-type cells. As a membrane permease, Fcy2 may mediate limited cisplatin transport because cisplatin accumulation in whole cells was slightly affected in the fcy2Δ mutant. However, the fcy2Δ mutant had a greater effect on the amount of DNA-bound cisplatin, which decreased to 50 to 60% of that in the wild-type cells. Taken together, our results indicate that dysregulation of the purine nucleotide biosynthesis pathways and the addition of exogenous purines can modulate cisplatin cytotoxicity in Saccharomyces cerevisiae.


BMC Bioinformatics | 2004

PATTERNFINDER: combined analysis of DNA regulatory sequences and double-helix stability

Yanlin Huang; David Kowalski

BackgroundRegulatory regions that function in DNA replication and gene transcription contain specific sequences that bind proteins as well as less-specific sequences in which the double helix is often easy to unwind. Progress towards predicting and characterizing regulatory regions could be accelerated by computer programs that perform a combined analysis of specific sequences and DNA unwinding properties.ResultsHere we present PATTERNFINDER, a web server that searches DNA sequences for matches to specific or flexible patterns, and analyzes DNA helical stability. A batch mode of the program generates a tabular map of matches to multiple, different patterns. Regions flanking pattern matches can be targeted for helical stability analysis to identify sequences with a minimum free energy for DNA unwinding. As an example application, we analyzed a regulatory region of the human c-myc proto-oncogene consisting of a single-strand-specific protein binding site within a DNA region that unwindsin vivo. The predicted region of minimal helical stability overlapped both the protein binding site and the unwound DNA region identified experimentally.ConclusionsThe PATTERNFINDER web server permits localization of known functional elements or landmarks in DNA sequences as well as prediction of potential new elements. Batch analysis of multiple patterns facilitates the annotation of DNA regulatory regions. Identifying specific pattern matches linked to DNA with low helical stability is useful in characterizing regulatory regions for transcription, replication and other processes and may predict functional DNA unwinding elements.PATTERNFINDER can be accessed freely at: http://wings.buffalo.edu/gsa/dna/dk/PFP/

Collaboration


Dive into the David Kowalski's collaboration.

Top Co-Authors

Avatar

Robert M. Umek

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Darren A. Natale

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ruea-Yea Huang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Charles A. Miller

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marija Vujcic

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eugen C. Minca

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sluan Lin

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yangzhou Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Yanlin Huang

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge