Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Kuninger is active.

Publication


Featured researches published by David Kuninger.


Journal of Cell Science | 2006

Complex biosynthesis of the muscle-enriched iron regulator RGMc.

David Kuninger; Robin Kuns-Hashimoto; Ryan Kuzmickas; Peter Rotwein

The recently discovered repulsive guidance molecule c (RGMc or hemojuvelin) gene encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that is expressed in striated muscle and in liver. Mutations in this gene have been linked to the severe iron storage disease, juvenile hemochromatosis, although the mechanisms of action of RGMc in iron metabolism are unknown. As a first step toward understanding the molecular physiology of this protein, we studied its biosynthesis, processing and maturation. Production of RGMc occurs as an early and sustained event during skeletal muscle differentiation in culture and is secondary to RGMc gene activation. As assessed by pulse-chase studies and cell-surface labeling experiments, two classes of GPI-anchored and glycosylated RGMc molecules are targeted to the membrane and undergo distinct fates. Full-length RGMc is released from the cell surface and accumulates in extracellular fluid, where its half-life exceeds 24 hours. By contrast, the predominant membrane-associated isoform, a disulfide-linked heterodimer composed of N- and C-terminal fragments, is not found in the extracellular fluid, and is short-lived, as it disappears from the cell surface with a half-life of <3 hours after interruption of protein synthesis. A natural disease-associated RGMc mutant, with valine substituted for glycine at residue 320 (313 in mouse RGMc), does not undergo processing to generate the heterodimeric membrane-linked isoform of RGMc, and is found on the cell surface only as larger protein species. Our results define a series of biosynthetic steps leading to the normal production of different RGMc isoforms in cells, and provide a framework for understanding the biochemical basis of defects in the maturation of RGMc in juvenile hemochromatosis.


Stem Cells International | 2012

Generation of Human-Induced Pluripotent Stem Cells by a Nonintegrating RNA Sendai Virus Vector in Feeder-Free or Xeno-Free Conditions

Chad C. MacArthur; Andrew Fontes; Namritha Ravinder; David Kuninger; Jasmeet Kaur; Matthew Bailey; Antje Taliana; Mohan C. Vemuri; Pauline T. Lieu

The generation of induced pluripotent stem cells (iPSCs) from somatic cells has enabled the possibility of providing unprecedented access to patient-specific iPSC cells for drug screening, disease modeling, and cell therapy applications. However, a major obstacle to the use of iPSC for therapeutic applications is the potential of genomic modifications caused by insertion of viral transgenes in the cellular genome. A second concern is that reprogramming often requires the use of animal feeder layers and reagents that contain animal origin products, which hinder the generation of clinical-grade iPSCs. Here, we report the generation of iPSCs by an RNA Sendai virus vector that does not integrate into the cells genome, providing transgene-free iPSC line. In addition, reprogramming can be performed in feeder-free condition with StemPro hESC SFM medium and in xeno-free (XF) conditions. Generation of an integrant-free iPSCs generated in xeno-free media should facilitate the safe downstream applications of iPSC-based cell therapies.


American Journal of Physiology-cell Physiology | 2008

Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism, to BMP-2 and neogenin

Robin Kuns-Hashimoto; David Kuninger; Mahta Nili; Peter Rotwein

Juvenile hemochromatosis is a severe and rapidly progressing hereditary disorder of iron overload, and it is caused primarily by defects in the gene encoding repulsive guidance molecule c/hemojuvelin (RGMc/HJV), a recently identified protein that undergoes a complicated biosynthetic pathway in muscle and liver, leading to cell membrane-linked single-chain and heterodimeric species, and two secreted single-chain isoforms. RGMc modulates expression of the hepatic iron regulatory factor, hepcidin, potentially through effects on signaling by the bone morphogenetic protein (BMP) family of soluble growth factors. To date, little is known about specific pathogenic defects in disease-causing RGMc/HJV proteins. Here we identify functional abnormalities in three juvenile hemochromatosis-linked mutants. Using a combination of approaches, we first show that BMP-2 could interact in biochemical assays with single-chain RGMc species, and also could bind to cell-associated RGMc. Two mouse RGMc amino acid substitution mutants, D165E and G313V (corresponding to human D172E and G320V), also could bind BMP-2, but less effectively than wild-type RGMc, while G92V (human G99V) could not. In contrast, the membrane-spanning protein, neogenin, a receptor for the related molecule, RGMa, preferentially bound membrane-associated heterodimeric RGMc and was able to interact on cells only with wild-type RGMc and G92V. Our results show that different isoforms of RGMc/HJV may play unique physiological roles through defined interactions with distinct signaling proteins and demonstrate that, in some disease-linked RGMc mutants, these interactions are defective.


BMC Biochemistry | 2008

Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin

David Kuninger; Robin Kuns-Hashimoto; Mahta Nili; Peter Rotwein

BackgroundRepulsive guidance molecule c (RGMc or hemojuvelin), a glycosylphosphatidylinositol-linked glycoprotein expressed in liver and striated muscle, plays a central role in systemic iron balance. Inactivating mutations in the RGMc gene cause juvenile hemochromatosis (JH), a rapidly progressing iron storage disorder with severe systemic manifestations. RGMc undergoes complex biosynthetic steps leading to membrane-bound and soluble forms of the protein, including both 50 and 40 kDa single-chain species.ResultsWe now show that pro-protein convertases (PC) are responsible for conversion of 50 kDa RGMc to a 40 kDa protein with a truncated COOH-terminus. Unlike related molecules RGMa and RGMb, RGMc encodes a conserved PC recognition and cleavage site, and JH-associated RGMc frame-shift mutants undergo COOH-terminal cleavage only if this site is present. A cell-impermeable peptide PC inhibitor blocks the appearance of 40 kDa RGMc in extra-cellular fluid, as does an engineered mutation in the conserved PC recognition sequence, while the PC furin cleaves 50 kDa RGMc in vitro into a 40 kDa molecule with an intact NH2-terminus. Iron loading reduces release of RGMc from the cell membrane, and diminishes accumulation of the 40 kDa species in cell culture medium.ConclusionOur results define a role for PCs in the maturation of RGMc that may have implications for the physiological actions of this critical iron-regulatory protein.


Molecular Endocrinology | 2011

TGF-β Inhibits Muscle Differentiation by Blocking Autocrine Signaling Pathways Initiated by IGF-II

Samantha Gardner; Damir Alzhanov; Paul Knollman; David Kuninger; Peter Rotwein

Skeletal muscle differentiation and regeneration are regulated by interactions between exogenous hormone- and growth factor-activated signaling cascades and endogenous muscle-specific transcriptional programs. IGF-I and IGF-II can promote muscle differentiation in vitro and can enhance muscle maintenance and repair in vivo. In contrast, members of the TGF-β superfamily prominently inhibit muscle differentiation and regeneration. In this study, we have evaluated functional interactions between IGF- and TGF-β-regulated signaling pathways during skeletal muscle differentiation. In the mouse C2 muscle cell line and in human myoblasts in primary culture, addition of TGF-β1 blocked differentiation in a dose-dependent way, inhibited expression of muscle-specific mRNAs and proteins, and impaired myotube formation. TGF-β1 also diminished stimulation of IGF-II gene expression in myoblasts, decreased IGF-II secretion, and reduced IGF-I receptor activation. To test the hypothesis that TGF-β1 prevents muscle differentiation primarily by blocking IGF-II production, we examined effects of IGF analogues on TGF-β actions in myoblasts. Although both IGF-I and IGF-II restored muscle gene and protein expression, and stimulated myotube formation in the presence of TGF-β1, they did not reduce TGF-β1-stimulated signaling, as measured by no decline in phosphorylation of SMA and mothers against decapentaplegic homolog (Smad)3, or in induction of TGF-β-activated target genes, including a Smad-dependent promoter-reporter plasmid. Our results demonstrate that TGF-β disrupts an IGF-II-stimulated autocrine amplification cascade that is necessary for muscle differentiation in vitro. Because this inhibitory pathway can be overcome by exogenous IGFs, our observations point toward potential strategies to counteract disorders that reduce muscle mass and strength.


Journal of Biological Chemistry | 2003

The Acetylase Activity of p300 Is Dispensable for MDM2 Stabilization

Shelya X. Zeng; David Kuninger; Peter Rotwein; Hua Lu

It has been shown that p300 binds to MDM2 and leads to down-regulation of the p53 function. However, it remains unclear whether the acetylase activity of p300 is necessary for regulating MDM2 stability. In this study, we address this issue. First, p300 did not acetylate MDM2 in solution and in cells. Second, overexpression of p300 in cells increased the level of the MDM2 protein but not its mRNA. Similarly, the acetylase-defective p300 AT2 mutant stabilized the MDM2 protein as well. Consistently, the deacetylase inhibitor, trichostatin A, did not significantly affect the half-life of the endogenous MDM2 protein, whereas p300 enhanced the half-life of MDM2. Finally, both wild type and acetylase-defective mutant p300 proteins associated with MDM2 in nuclear body-like structures where MDM2 might be protected from proteasomal degradation. Thus, these results suggest that p300 appears to stabilize MDM2 by retaining this protein in a specific nuclear structure rather than by acetylating it.


Genomics | 2004

Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation.

David Kuninger; Ryan Kuzmickas; Bonnie Peng; John E. Pintar; Peter Rotwein


Human Gene Therapy | 2004

Gene disruption by regulated short interfering RNA expression, using a two-adenovirus system

David Kuninger; Daniel Stauffer; Siavash Eftekhari; Elizabeth M. Wilson; Mathew J. Thayer; Peter Rotwein


Journal of Biotechnology | 2007

A non-isotopic in vitro assay for histone acetylation

David Kuninger; James R. Lundblad; Anthony A. Semirale; Peter Rotwein


American Journal of Physiology-cell Physiology | 2006

Muscle cell survival mediated by the transcriptional coactivators p300 and PCAF displays different requirements for acetyltransferase activity

David Kuninger; Alistair Wright; Peter Rotwein

Collaboration


Dive into the David Kuninger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge