Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Bernick is active.

Publication


Featured researches published by David L. Bernick.


Environmental Microbiology | 2012

ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

Kamrun Zargar; Alison Conrad; David L. Bernick; Todd M. Lowe; Viktor Stolc; Shelley E. Hoeft; Ronald S. Oremland; John F. Stolz; Chad W. Saltikov

Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.


Journal of Bacteriology | 2009

Transcriptional Map of Respiratory Versatility in the Hyperthermophilic Crenarchaeon Pyrobaculum aerophilum

Aaron E. Cozen; Matthew T. Weirauch; Katherine S. Pollard; David L. Bernick; Joshua M. Stuart; Todd M. Lowe

Hyperthermophilic crenarchaea in the genus Pyrobaculum are notable for respiratory versatility, but relatively little is known about the genetics or regulation of crenarchaeal respiratory pathways. We measured global gene expression in Pyrobaculum aerophilum cultured with oxygen, nitrate, arsenate and ferric iron as terminal electron acceptors to identify transcriptional patterns that differentiate these pathways. We also compared genome sequences for four closely related species with diverse respiratory characteristics (Pyrobaculum arsenaticum, Pyrobaculum calidifontis, Pyrobaculum islandicum, and Thermoproteus neutrophilus) to identify genes associated with different respiratory capabilities. Specific patterns of gene expression in P. aerophilum were associated with aerobic respiration, nitrate respiration, arsenate respiration, and anoxia. Functional predictions based on these patterns include separate cytochrome oxidases for aerobic growth and oxygen scavenging, a nitric oxide-responsive transcriptional regulator, a multicopper oxidase involved in denitrification, and an archaeal arsenate respiratory reductase. We were unable to identify specific genes for iron respiration, but P. aerophilum exhibited repressive transcriptional responses to iron remarkably similar to those controlled by the ferric uptake regulator in bacteria. Together, these analyses present a genome-scale view of crenarchaeal respiratory flexibility and support a large number of functional and regulatory predictions for further investigation. The complete gene expression data set can be viewed in genomic context with the Archaeal Genome Browser at archaea.ucsc.edu.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Discovery of a minimal form of RNase P in Pyrobaculum

Lien B. Lai; Patricia P. Chan; Aaron E. Cozen; David L. Bernick; James W. Brown; Venkat Gopalan; Todd M. Lowe

RNase P RNA is an ancient, nearly universal feature of life. As part of the ribonucleoprotein RNase P complex, the RNA component catalyzes essential removal of 5′ leaders in pre-tRNAs. In 2004, Li and Altman computationally identified the RNase P RNA gene in all but three sequenced microbes: Nanoarchaeum equitans, Pyrobaculum aerophilum, and Aquifex aeolicus (all hyperthermophiles) [Li Y, Altman S (2004) RNA 10:1533–1540]. A recent study concluded that N. equitans does not have or require RNase P activity because it lacks 5′ tRNA leaders. The “missing” RNase P RNAs in the other two species is perplexing given evidence or predictions that tRNAs are trimmed in both, prompting speculation that they may have developed novel alternatives to 5′ pre-tRNA processing. Using comparative genomics and improved computational methods, we have now identified a radically minimized form of the RNase P RNA in five Pyrobaculum species and the related crenarchaea Caldivirga maquilingensis and Vulcanisaeta distributa, all retaining a conventional catalytic domain, but lacking a recognizable specificity domain. We confirmed 5′ tRNA processing activity by high-throughput RNA sequencing and in vitro biochemical assays. The Pyrobaculum and Caldivirga RNase P RNAs are the smallest naturally occurring form yet discovered to function as trans-acting precursor tRNA-processing ribozymes. Loss of the specificity domain in these RNAs suggests altered substrate specificity and could be a useful model for finding other potential roles of RNase P. This study illustrates an effective combination of next-generation RNA sequencing, computational genomics, and biochemistry to identify a divergent, formerly undetectable variant of an essential noncoding RNA gene.


Frontiers in Microbiology | 2012

Diversity of Antisense and Other Non-Coding RNAs in Archaea Revealed by Comparative Small RNA Sequencing in Four Pyrobaculum Species

David L. Bernick; Patrick P. Dennis; Lauren M. Lui; Todd M. Lowe

A great diversity of small, non-coding RNA (ncRNA) molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs (sRNA) in archaea is limited. We employed RNA-seq to identify novel sRNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense sRNAs encoded opposite to key regulatory (ferric uptake regulator), metabolic (triose-phosphate isomerase), and core transcriptional apparatus genes (transcription factor B). We also found a large increase in the number of conserved C/D box sRNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these sRNAs indicates they are relatively recent, stable adaptations.


PLOS Pathogens | 2014

IscR Is Essential for Yersinia pseudotuberculosis Type III Secretion and Virulence

Halie K. Miller; Laura Kwuan; Leah Schwiesow; David L. Bernick; Erin L. Mettert; Hector A. Ramirez; James Matthew Ragle; Patricia P. Chan; Patricia J. Kiley; Todd M. Lowe; Victoria Auerbuch

Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen Yersinia pseudotuberculosis. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the E. coli iron-sulfur cluster regulator, IscR. A Y. pseudotuberculosis iscR in-frame deletion mutant (ΔiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify Y. pseudotuberculosis genes regulated by IscR. We discovered a putative IscR binding motif upstream of the Y. pseudotuberculosis yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in Yersinia, we hypothesized that Yersinia IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in Y. pseudotuberculosis in the absence of IscR. Importantly, mice orally infected with the Y. pseudotuberculosis ΔiscR mutant displayed decreased bacterial burden in Peyers patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in Y. pseudotuberculosis virulence. This study presents the first characterization of Yersinia IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF.


Frontiers in Microbiology | 2012

Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum.

David L. Bernick; Courtney L. Cox; Patrick P. Dennis; Todd M. Lowe

Within the domain Archaea, the CRISPR immune system appears to be nearly ubiquitous based on computational genome analyses. Initial studies in bacteria demonstrated that the CRISPR system targets invading plasmid and viral DNA. Recent experiments in the model archaeon Pyrococcus furiosus have uncovered a novel RNA-targeting variant of the CRISPR system. Because our understanding of CRISPR system evolution in other archaea is limited, we have taken a comparative genomic and transcriptomic view of the CRISPR arrays across six diverse species within the crenarchaeal genus Pyrobaculum. We present transcriptional data from each of four species in the genus (P. aerophilum, P. islandicum, P. calidifontis, P. arsenaticum), analyzing mature CRISPR-associated small RNA abundance from over 20 arrays. Within the genus, there is remarkable conservation of CRISPR array structure, as well as unique features that are have not been studied in other archaeal systems. These unique features include: a nearly invariant CRISPR promoter, conservation of direct repeat families, the 5′ polarity of CRISPR-associated small RNA abundance, and a novel CRISPR-specific association with homologues of nurA and herA. These analyses provide a genus-level evolutionary perspective on archaeal CRISPR systems, broadening our understanding beyond existing non-comparative model systems.


Frontiers in Bioengineering and Biotechnology | 2015

Capture, Unfolding, and Detection of Individual tRNA Molecules Using a Nanopore Device.

Andrew M. Smith; Robin Abu-Shumays; Mark Akeson; David L. Bernick

Transfer RNAs (tRNA) are the most common RNA molecules in cells and have critical roles as both translators of the genetic code and regulators of protein synthesis. As such, numerous methods have focused on studying tRNA abundance and regulation, with the most widely used methods being RNA-seq and microarrays. Though revolutionary to transcriptomics, these assays are limited by an inability to encode tRNA modifications in the requisite cDNA. These modifications are abundant in tRNA and critical to their function. Here, we describe proof-of-concept experiments where individual tRNA molecules are examined as linear strands using a biological nanopore. This method utilizes an enzymatically ligated synthetic DNA adapter to concentrate tRNA at the lipid bilayer of the nanopore device and efficiently denature individual tRNA molecules, as they are pulled through the α-hemolysin (α-HL) nanopore. Additionally, the DNA adapter provides a loading site for ϕ29 DNA polymerase (ϕ29 DNAP), which acts as a brake on the translocating tRNA. This increases the dwell time of adapted tRNA in the nanopore, allowing us to identify the region of the nanopore signal that is produced by the translocating tRNA itself. Using adapter-modified Escherichia coli tRNAfMet and tRNALys, we show that the nanopore signal during controlled translocation is dependent on the identity of the tRNA. This confirms that adapter-modified tRNA can translocate end-to-end through nanopores and provide the foundation for future work in direct sequencing of individual transfer RNA with a nanopore-based device.


Mbio | 2017

Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains

Jenny Draper; Lori M. Hansen; David L. Bernick; Samar Abedrabbo; Jason G. Underwood; Nguyet Kong; Bihua C. Huang; Allison M. Weis; Bart C. Weimer; Arnoud H. M. van Vliet; Nader Pourmand; Jay V. Solnick; Kevin Karplus; Karen M. Ottemann

ABSTRACT Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains. IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish “the genome” of a bacterial strain. Variability is usually reduced (“only sequence from a single colony”), ignored (“just publish the consensus”), or placed in the “too-hard” basket (“analysis of raw read data is more robust”). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as “the genome” of a bacterial strain may be misleading. IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish “the genome” of a bacterial strain. Variability is usually reduced (“only sequence from a single colony”), ignored (“just publish the consensus”), or placed in the “too-hard” basket (“analysis of raw read data is more robust”). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as “the genome” of a bacterial strain may be misleading.


Standards in Genomic Sciences | 2012

Complete genome sequence of Pyrobaculum oguniense

David L. Bernick; Kevin Karplus; Lauren M. Lui; Joanna K. C. Coker; Julie N. Murphy; Patricia P. Chan; Aaron E. Cozen; Todd M. Lowe

Pyrobaculum oguniense TE7 is an aerobic hyperthermophilic crenarchaeon isolated from a hot spring in Japan. Here we describe its main chromosome of 2,436,033 bp, with three large-scale inversions and an extra-chromosomal element of 16,887 bp. We have annotated 2,800 protein-coding genes and 145 RNA genes in this genome, including nine H/ACA-like small RNA, 83 predicted C/D box small RNA, and 47 transfer RNA genes. Comparative analyses with the closest known relative, the anaerobe Pyrobaculum arsenaticum from Italy, reveals unexpectedly high synteny and nucleotide identity between these two geographically distant species. Deep sequencing of a mixture of genomic DNA from multiple cells has illuminated some of the genome dynamics potentially shared with other species in this genus.


Nucleic Acids Research | 2018

Methylation guide RNA evolution in archaea: structure, function and genomic organization of 110 C/D box sRNA families across six Pyrobaculum species

Lauren M. Lui; Andrew V Uzilov; David L. Bernick; Andrea Corredor; Todd M. Lowe; Patrick P Dennis

Abstract Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2′-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.

Collaboration


Dive into the David L. Bernick's collaboration.

Top Co-Authors

Avatar

Todd M. Lowe

University of California

View shared research outputs
Top Co-Authors

Avatar

Lauren M. Lui

University of California

View shared research outputs
Top Co-Authors

Avatar

Aaron E. Cozen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Karplus

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick P. Dennis

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge