Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Caudell is active.

Publication


Featured researches published by David L. Caudell.


PLOS ONE | 2010

Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus.

Rujuan Dai; Yan-Yan Zhang; Deena Khan; Bettina Heid; David L. Caudell; Oswald Crasta; S. Ansar Ahmed

Background Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far. Methodology/Principal Findings In this study, we profiled miRNA expressions in splenic lymphocytes from three murine lupus models (MRL-lpr, B6-lpr and NZB/WF1) with different genetic background by miRNA microarray assays and Real-time RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from MRL-lpr mice. Conclusions/Significance The identification of common lupus disease-associated miRNAs now forms the basis for the further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus.


Journal of Biological Chemistry | 2015

Mechanisms of Human Erythrocytic Bioactivation of Nitrite

Chen Liu; Nadeem Wajih; Xiaohua Liu; Swati Basu; John Janes; Madison Marvel; Christian Keggi; Christine C. Helms; Amber N. Lee; Andrea Belanger; Debra I. Diz; Paul J. Laurienti; David L. Caudell; Jun Wang; Mark T. Gladwin; Daniel B. Kim-Shapiro

Background: Erythrocytes contribute to nitrite-mediated NO signaling, but the mechanism is unclear. Results: Deoxyhemoglobin accounts for virtually all NO made from nitrite by erythrocytes with no contributions from other proposed pathways. Conclusion: Deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions. Significance: Reduction by deoxyhemoglobin accounts for nitrite-mediated NO signaling in blood mediating vessel tone and platelet function. Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood.


Leukemia | 2008

The role of CALM-AF10 gene fusion in acute leukemia.

David L. Caudell; Peter D. Aplan

Chromosomal translocations are important genetic perturbations frequently associated with hematologic malignancies; characterization of these events has been a rich source of insights into the mechanisms that lead to malignant transformation. The t(10;11)(p13;q14–21) results in a recently identified rare but recurring chromosomal translocation seen in patients with ALL as well as AML, and results in the production of a CALM–AF10 fusion gene. Although the details by which the CALM–AF10 fusion protein exerts its leukemogenic effect remain unclear, emerging data suggests that the CALM–AF10 fusion impairs differentiation of hematopoietic cells, at least in part via an upregulation of HOXA cluster genes. This review discusses the normal structure and function of CALM and AF10, describes the spectrum of clinical findings seen in patients with CALM–AF10 fusions, summarizes recently published CALM–AF10 mouse models and highlights the role of HOXA cluster gene activation in CALM–AF10 leukemia.


Veterinary Parasitology | 2010

Efficacy of an orange oil emulsion as an anthelmintic against Haemonchus contortus in gerbils (Meriones unguiculatus) and in sheep

Jill M. Squires; Joyce G. Foster; David S. Lindsay; David L. Caudell; Anne M. Zajac

Haemonchus contortus is a blood-sucking abomasal parasite responsible for major losses to small ruminant producers worldwide. The recent increase in populations of anthelmintic resistant parasites has produced a demand for alternative control methods. An orange oil emulsion that has shown activity against plant parasitic nematodes and H. contortus in vitro was assessed for activity against H. contortus in a gerbil model and in the natural ovine host. In gerbil experiments, animals were infected with 600 infective third stage (L3) H. contortus larvae. In one experiment, gerbils were treated with 600 milligrams per kilogram bodyweight (mg/kg BW) orange oil once or daily for 5 days. In a second experiment, gerbils were treated with 1200 mg/kg BW orange oil once or daily for 5 days. On Day 9 post-infection, gerbils were killed, their stomachs removed, and the worms counted. The 600 mg/kg BW dosage caused 7% and 62.6% parasite reduction compared to a control group when given once or daily for 5 days, respectively. The 1200 mg/kg BW dosage of orange oil caused 25% and 87.8% parasite reduction compared to a control group when given once or daily for 5 days, respectively. The difference between the multiple treatment and control group were significant at both dosages (P<0.005). In the sheep trial, 18 lambs were orally inoculated with 10,000 L3 H. contortus. One month later, two groups of six lambs each were dosed with 600 mg/kg BW orange oil either once or daily for 3 days. Fecal egg counts were monitored daily starting on the first day of treatment (Day 0) and continuing for 14 days. Results showed that a single dose of the product caused high fecal egg count reduction (97.4%) compared to control sheep. Egg counts were significantly reduced by Day 2 (P<0.0001). Thus, the orange oil emulsion may potentially be useful in the control of ovine haemonchosis.


Clinical Immunology | 2014

Class I and II histone deacetylase inhibition by ITF2357 reduces SLE pathogenesis in vivo.

Nicole L. Regna; Cristen B. Chafin; Sarah E. Hammond; Abdul Gafoor Puthiyaveetil; David L. Caudell; Christopher M. Reilly

We sought to determine if a specific class I and II HDAC inhibitor (ITF2357) was able to decrease disease in lupus-prone NZB/W mice through regulation of T cell profiles. From 22 to 38 weeks-of-age, NZB/W and non-lupus NZW mice were treated with ITF2357 (5 mg/kg or 10 mg/kg), or vehicle control. Body weight and proteinuria were measured every 2 weeks, while sera anti-dsDNA and cytokine levels were measured every 4 weeks. Kidney disease was determined by sera IgG levels, immune complex deposition, and renal pathology. T lymphocyte profiles were assessed using flow cytometric analyses. Our results showed that NZB/W mice treated with the 10 mg/kgof ITF2357 had decreased renal disease and inflammatory cytokines in the sera. Treatment with ITF2357 decreased the Th17 phenotype while increasing the percentage of Tregs as well as Foxp3 acetylation. These results suggest that specific HDAC inhibition may decrease disease by altering T cell differentiation and acetylation.


Cellular & Molecular Immunology | 2012

Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus

Samuel K. Shimp; Cristen B. Chafin; Nicole L. Regna; Sarah E. Hammond; Molly A Read; David L. Caudell; MarissaNichole Rylander; Christopher M. Reilly

Elevated expression of heat shock protein 90 (HSP90) has been found in kidneys and serum of systemic lupus erythematosus (SLE) patients and MRL/Mp-Faslpr/Faslpr (MRL/lpr) autoimmune mice. We investigated if inhibition of HSP90 would reduce disease in MRL/lpr mice. In vitro, pretreatment of mesangial cells with HSP90 inhibitor Geldanamycin prior to immune-stimulation showed reduced expression of IL-6, IL-12 and NO. In vivo, we found HSP90 expression was elevated in MRL/lpr kidneys when compared to C57BL/6 mice and MRL/lpr mice treated with HSP90 inhibitor 17-DMAG. MRL/lpr mice treated with 17-DMAG showed decreased proteinuria and reduced serum anti-dsDNA antibody production. Glomerulonephritis and glomerular IgG and C3 were not significantly affected by administration of 17-DMAG in MRL/lpr. 17-DMAG increased CD8+ T cells, reduced double-negative T cells, decreased the CD4/CD8 ratio and reduced follicular B cells. These studies suggest that HSP90 may play a role in regulating T-cell differentiation and activation and that HSP90 inhibition may reduce inflammation in lupus.


Autoimmunity | 2013

MicroRNA-let-7a expression is increased in the mesangial cells of NZB/W mice and increases IL-6 production in vitro.

Cristen B. Chafin; Nicole L. Regna; Rujuan Dai; David L. Caudell; Christopher M. Reilly

Abstract Recent evidence supports a role for epigenetic alterations in the pathogenesis of systemic lupus erythematosus (SLE). MicroRNAs (miRNAs or miRs) are endogenous epigenetic regulators whose expression is altered in many diseases, including SLE. IL-6 is an inflammatory cytokine produced by mesangial cells during lupus nephritis (LN). IL-6 contains a potential binding site for miRNA-let-7a (let-7a) in its 3′ untranslated region (UTR). We found let-7a expression was significantly increased in the mesangial cells of pre-diseased and actively diseased New Zealand Black/White (NZB/W) mice compared to age-matched New Zealand White (NZW) mice. Overexpression of let-7a in vitro increased IL-6 production in stimulated mesangial cells compared to non-transfected controls. Inhibition of let-7a did not significantly affect immune-stimulated IL-6 production. When stimulated mesangial cells overexpressing let-7a were treated with the transcription inhibitor Actinomycin D (ActD), IL-6 was degraded faster, consistent with the direct targeting of the 3′ UTR of IL-6 by let-7a. Overexpression of let-7a increased the expression of tristetraprolin (TTP), an RNA-binding protein (RBP) that has 5 potential binding regions in the 3′ UTR of IL-6. ActD inhibited the transcription of proteins including TTP that may contribute to the let-7a-mediated increase in immune-stimulated IL-6 production. These data show that NZB/W mice have higher let-7a expression than NZW mice and that increased let-7a expression in vitro increases IL-6 production in stimulated mesangial cells. Further studies examining the role of let-7a expression in inflammation are warranted.


Blood | 2012

Unique dual targeting of thymidylate synthase and topoisomerase1 by FdUMP[10] results in high efficacy against AML and low toxicity.

Timothy S. Pardee; Evan Gomes; Jamie Jennings-Gee; David L. Caudell; William H. Gmeiner

Acute myeloid leukemia (AML) is an aggressive malignancy that leads to marrow failure and death. There is a desperate need for new therapies. The novel fluoropyrimidine, FdUMP[10], was highly active against both human AML cell lines, (IC(50) values, 3.4nM-21.5nM) and murine lines (IC(50) values, 123.8pM-131.4pM). In all cases, the IC(50) of FdUMP[10] was lower than for cytarabine and ∼ 1000 times lower than 5-fluorouracil (5-FU). FdUMP[10] remained effective against cells expressing the Flt3 internal tandem duplication, BCR-ABL, MN1, and an shRNA against p53. It had activity against patient samples at concentrations that did not affect normal hematopoietic cells. FdUMP[10] inhibited thymidylate synthase (TS) and trapped topoisomerase I cleavage complexes (Top1CCs), leading to DNA damage and apoptosis. All cell lines and nearly all primary AML samples examined expressed both TS and Top1. In vivo, FdUMP[10] was active against a syngeneic AML model with a survival advantage equivalent to doxorubicin plus cytarabine. 5-FU treatment was toxic and did not improve survival. FdUMP[10] was better tolerated than 5-FU or cytarabine plus doxorubicin and did not affect normal HSCs, while 5-FU dramatically impaired their ability to engraft. In summary, FdUMP[10] was highly efficacious and better tolerated than standard therapies.


Cellular & Molecular Immunology | 2014

MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro

Cristen B. Chafin; Nicole L. Regna; David L. Caudell; Christopher M. Reilly

Epigenetic factors, including altered microRNA (miRNA) expression, may contribute to aberrant immune cell function in systemic lupus erythematosus (SLE). MiRNA-let-7a (let-7a) has been shown to directly alter cell cycle progression and proinflammatory cytokine production. Due to the crucial role of let-7a in cell division and inflammation, we investigated let-7a-mediated proliferation and NFκB translocation in J774A.1 macrophages and MES 13 mesangial cells in vitro. In immune-stimulated cells transfected with let-7a, cell proliferation was significantly increased over time. There was a significant increase in the number of immune-stimulated cells in S and G2 phases. Immune-stimulated cells overexpressing let-7a had increased nuclear translocation of NFκB. Bioinformatical analysis revealed that the E2F family, critical regulators of the G1–S transition, has potential binding sites for let-7a in their mRNA transcripts. Let-7a overexpression significantly increased the expression of the cell cycle activator E2F2 and increased retinoblastoma protein (Rb) phosphorylation in immune-stimulated cells. The cell cycle inhibitor E2F5 was significantly decreased in let-7a-transfected cells that were immune-stimulated. Bioinformatical analysis revealed E2F2 and NFκB are transcription factors predicted to regulate the let-7a promoter. We analyzed transcriptional regulation of let-7a by real-time RT-PCR using chromatin immunoprecipitation with E2F2 and NFκB antibodies. There was an increase in E2F2 and NFκB binding in DNA enriched for the let-7a promoter in immune-stimulated cells. Silencing E2F2 or NFκB significantly decreased let-7a expression and IL-6 production in immune-stimulated cells. Taken together, our results suggest that overexpression of let-7a may contribute to hyperplasia and the proinflammatory response in SLE.


Blood | 2010

Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice

David L. Caudell; David P. Harper; Rachel L. Novak; Rachel M. Pierce; Christopher Slape; Linda Wolff; Peter D. Aplan

The t(10;11) translocation results in a CALM-AF10 fusion gene in a subset of leukemia patients. Expression of a CALM-AF10 transgene results in leukemia, with prolonged latency and incomplete penetrance, suggesting that additional events are necessary for leukemic transformation. CALM-AF10 mice infected with the MOL4070LTR retrovirus developed acute leukemia, and ligation-mediated polymerase chain reaction was used to identify retroviral insertions at 19 common insertion sites, including Zeb2, Nf1, Mn1, Evi1, Ift57, Mpl, Plag1, Kras, Erg, Vav1, and Gata1. A total of 26% (11 of 42) of the mice had retroviral integrations near Zeb2, a transcriptional corepressor leading to overexpression of the Zeb2-transcript. A total of 91% (10 of 11) of mice with Zeb2 insertions developed B-lineage acute lymphoblastic leukemia, suggesting that Zeb2 activation promotes the transformation of CALM-AF10 hematopoietic precursors toward B-lineage leukemias. More than half of the mice with Zeb2 integrations also had Nf1 integrations, suggesting cooperativity among CALM-AF10, Zeb2, and Ras pathway mutations. We searched for Nras, Kras, and Ptpn11 point mutations in the CALM-AF10 leukemic mice. Three mutations were identified, all of which occurred in mice with Zeb2 integrations, consistent with the hypothesis that Zeb2 and Ras pathway activation promotes B-lineage leukemic transformation in concert with CALM-AF10.

Collaboration


Dive into the David L. Caudell's collaboration.

Top Co-Authors

Avatar

Christopher M. Reilly

Edward Via College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar

Timothy S. Pardee

Wake Forest Baptist Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter D. Aplan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Harper

Madigan Army Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge