Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Cedeño is active.

Publication


Featured researches published by David L. Cedeño.


Antimicrobial Agents and Chemotherapy | 2011

In Vitro and In Vivo Studies of the Utility of Dimethyl and Diethyl Carbaporphyrin Ketals in Treatment of Cutaneous Leishmaniasis

Viviana M. Taylor; David L. Cedeño; Diana L. Muñoz; Marjorie A. Jones; Timothy D. Lash; Alexandra M. Young; Manuel H. Constantino; Nicholas Esposito; Iván Darío Vélez; Sara M. Robledo

ABSTRACT Carbaporphyrin ketals are porphyrinoid compounds in which a pyrrole ring of a typical porphyrin macrocycle has been replaced by a ketal-substituted indene ring. It was recently demonstrated that these compounds are effective in vitro against Leishmania tarentolae. Their in vitro effectiveness is increased when they are exposed to visible light; they act as photosensitizers capable of mediating the production of reactive oxygen species (ROS). Following on this evidence, the effectiveness and cytotoxicity of the dimethyl and diethyl carbaporphyrin ketals (CKOMe and CKOEt, respectively) were determined in vitro using pathogenic Leishmania species with and without exposure to visible light (2 and 4 h). The effectiveness against various pathogenic Leishmania species was determined to be in a micromolar range. Additionally, the effect of encapsulating the carbaporphyrin ketals in liposome formulations was tested. Liposomal delivery diminished their toxicity, while the effectiveness was enhanced upon exposure to visible light (photodynamic effect). The cytotoxicity levels for human U937 cells and hamster peritoneal macrophages were in the ranges of 0.3 to 9 μM and 7 to 330 μM, respectively. When tested in vivo, using a hamster (Mesocricetus auratus) model of cutaneous leishmaniasis, CKOMe was active even in the dark, suggesting that the compound, once metabolized in the animal tissue, produces an active ingredient that does not seem to be photosensitive. Reduction in lesion size, histopathologic analyses, and smears confirmed the in vivo effectiveness of the compound, since the parasitic load was diminished without noticeable toxic effects.


Experimental Parasitology | 2010

Leishmania tarentolae: utility as an in vitro model for screening of antileishmanial agents.

Viviana M. Taylor; Diana L. Muñoz; David L. Cedeño; Iván Darío Vélez; Marjorie A. Jones; Sara M. Robledo

Primary screens for antileishmanial compounds use Leishmania species pathogenic to humans that must be handled under biosafety conditions that cannot be adopted or guaranteed everywhere. Leishmania tarentolae, a parasite isolated from the gecko Tarentolae annularis, has not been considered pathogenic to humans. Promastigotes of L. tarentolae have been previously used as a eukaryotic expression system for the production of recombinant proteins and in the amplification of genes involved in resistance to antileishmanial drugs. To validate the use of this Leishmania species in the screening of antileishmanial drugs, the sensitivity of axenic and intracellular amastigotes of L. tarentolae was compared to the sensitivity showed by Leishmania species causative of human leishmaniasis. The ability of L. tarentolae to grow as axenic amastigotes is first described while its ability to infect several mammalian cells has been confirmed. L. tarentolae amastigotes offer a suitable model for the in vitro screening of compounds for antileishmanial activity.


Inorganic Chemistry | 2008

Synthesis and Study of Hexanuclear Molybdenum Clusters Containing Thiolate Ligands

Lisa F. Szczepura; Karen A. Ketcham; Betty A. Ooro; Julia A. Edwards; Jeffrey N. Templeton; David L. Cedeño; Alan J. Jircitano

Four hexanuclear molybdenum chloride cluster complexes containing terminal thiolate ligands have been synthesized and fully characterized. (Bu 4N) 2[Mo 6Cl 8(SEt) 6] was prepared by reacting Na 2[Mo 6Cl 8(OMe) 6] with an excess of ethanethiol in refluxing tetrahydrofuran. (PPN) 2[Mo 6Cl 8(SBu) 6], (Bu 4N) 2[Mo 6Cl 8(SBn) 6], and (Bu 4N) 2[Mo 6Cl 8(SNC 8H 6) 6] (C 8H 6NS (-) = 3-indolylthiolate) were subsequently prepared in the reaction of [Mo 6Cl 8(SEt) 6] (2-) with an excess of HSR (R = Bu, Bn or 3-indolyl). Single crystal X-ray diffraction analyses were performed on two of these complexes: (PPN) 2[Mo 6Cl 8(SEt) 6].Et 2O, crystallizes in the triclinic space group P1 with a = 12.3894(11), b = 13.7651(12), c = 15.0974(13), alpha = 103.975(2), beta = 99.690(2), gamma = 98.062(2), and Z = 1; (PPh 3Me) 2[Mo 6Cl 8(SBn) 6].2NO 2CH 3, also crystallizes in the P1 space group with a = 12.1574(16), b = 13.4441(17), c = 14.2132(18), alpha = 89.654(2), beta = 88.365(2), gamma = 71.179(2), and Z = 1. Our studies demonstrate that [Mo 6Cl 8(SEt) 6] (2-) displays luminescent properties and that the same complex undergoes substitution reactions with different thiols, as well as reaction with electrophilic reagents such as MeI.


Bioorganic & Medicinal Chemistry | 2008

Carbaporphyrin ketals as potential agents for a new photodynamic therapy treatment of leishmaniasis.

Justin B. Morgenthaler; Steven J. Peters; David L. Cedeño; Manuel H. Constantino; Kevin A. Edwards; Erin M. Kamowski; Jennifer C. Passini; Brian E. Butkus; Alexandra M. Young; Timothy D. Lash; Marjorie A. Jones

Dimethyl and diethyl carbaporphyrin ketals inhibit the growth of Leishmania tarentolae promastigotes in vitro. The concentration dependency of the inhibitory effect was tested using the MTT assay. The presence of reactive oxygen species, such as singlet oxygen and superoxide, was detected using electron paramagnetic resonance spectroscopy with selected spin traps and confocal microscopy in cultures exposed to these carbaporphyrin ketals. These unique porphyrinoids show promise as potent inhibitors of Leishmania.


Photochemistry and Photobiology | 2010

Association of acenaphthoporphyrins with liposomes for the photodynamic treatment of leishmaniasis.

Daniel M. Gardner; Viviana M. Taylor; David L. Cedeño; Shruti Padhee; Sara M. Robledo; Marjorie A. Jones; Timothy D. Lash; Iván Darío Vélez

Acenaphthoporphyrins are potential photosensitizers for photodynamic therapy, but their hydrophobicity limits their potential. Liposomes have been widely investigated as delivery vehicles that can transport hydrophobic drugs in biological systems. Here we study the association of acenaphthoporphyrins with liposomes made up of dimyristoyl phosphatidylcholine (DMPC), and to liposomes made up of a mixture of DMPC, cholesterol (Chol) and distearoyl phosphatidylglycerol (DSPG) in a 2:1:0.8 molar ratio to evaluate how liposome composition affects association constants. In liposomes consisting only of DMPC, the smaller monoacenaphthoporphyrin had the largest association constant of 5.5 × 104 m−1 while the larger adj‐diacenaphthoporphyrin and opp‐diacenaphthoporphyrin (ODP) had smaller association constants at 1.8 × 104 and 1.5 × 104 m−1, respectively. The addition of liposomal Chol and DSPG has little effect on the magnitudes of the association constants. Polarization studies show that the acenaphthoporphyrins are driven far into the lipid bilayer to minimize polar–nonpolar interactions. Confocal microscopy confirms that the DMPC liposomes transport the porphyrins into promastigotes of Leishmania tarentolae. The compounds associated with DMPC:Chol:DSPG liposomes are effective in vitro against axenic and intracellular amastigotes of the pathogenic Leishmania panamensis. The effectiveness of the compounds is enhanced upon exposure of cultures to visible light.


Inorganic Chemistry | 2010

Substitution of the terminal chloride ligands of [Re(6)S(8)Cl(6)](4-) with triethylphosphine: photophysical and electrochemical properties of a new series of [Re(6)S(8)](2+) based clusters.

Lisa F. Szczepura; David L. Cedeño; Dean B. Johnson; Robert McDonald; Stanley A. Knott; Kristen M. Jeans; Jessica L. Durham

A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.


Applied Microbiology and Biotechnology | 2014

Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept

Stephen R. Hughes; Juan Carlos López-Núñez; Marjorie A. Jones; Bryan R. Moser; Elby J. Cox; Mitch R. Lindquist; Luz Ángela Galindo-Leva; Néstor M. Riaño-Herrera; Nelson Rodríguez-Valencia; Fernando Gast; David L. Cedeño; Ken Tasaki; Robert C. Brown; Al Darzins; Lane Brunner

The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.


Photochemistry and Photobiology | 2012

New Application for Expanded Porphyrins: Sapphyrin and Heterosapphyrins as Inhibitors of Leishmania Parasites

Jaqueline D. Hooker; Victoria H. Nguyen; Viviana M. Taylor; David L. Cedeño; Timothy D. Lash; Marjorie A. Jones; Sara M. Robledo; Iván Darío Vélez

Sapphyrins and a series of related porphyrinoid macrocycles have been investigated as potential agents for the treatment of leishmaniasis. The effectiveness of the compounds was evaluated in vitro upon incubation with Leishmania tarentolae or L. panamensis amastigotes and promastigotes. Their effectiveness was also assessed against intracellular L. panamensis. The cytotoxicity of the compounds was evaluated in vitro using the U937 human promonocyte cell line. Effectiveness and cytotoxicity were assessed in the presence and absence of visible light to assess the photodynamic activity of the compounds. Sapphyrin and two related heterosapphyrins were shown to be particularly effective as inhibitors of Leishmania. A photodynamic effect was observed, which may be attributed to the formation of reactive oxygen species. Yields of singlet oxygen (1O2) produced were determined in ethanol solutions by direct measurement of 1O2 phosphorescence. Confocal microscopy demonstrated that sapphyrin and related macrocycles were taken up by the Leishmania cells and that their presence induces the formation of mitochondrial superoxide. Sapphyrins have been widely investigated as anticancer agents and we here show activity against the Leishmania parasites.


Antimicrobial Agents and Chemotherapy | 2015

Development of a Novel Formulation with Hypericin To Treat Cutaneous Leishmaniasis Based on Photodynamic Therapy in In Vitro and In Vivo Studies

Andrés Montoya; Alejandro Daza; Diana L. Muñoz; Karina Ríos; Viviana M. Taylor; David L. Cedeño; Iván Darío Vélez; Fernando Echeverri; Sara M. Robledo

ABSTRACT An evaluation of the leishmanicidal activity in vitro and in vivo of hypericin, an expanded-spectrum photosensitizer found in Hypericum perforatum, is presented. Hypericin was evaluated against intracellular amastigotes in vitro of Leishmania (Viannia) panamensis. A topical formulation containing 0.5% hypericin was developed and assayed in vivo in a hamster model of cutaneous leishmaniasis. Results demonstrate that hypericin induces a significant antiamastigote effect in vitro against L. panamensis by decreasing the number of parasites inside infected cells. The topical formulation of 0.5% hypericin allows healing of L. panamensis-induced lesions upon a topical application of 40 mg/day plus visible-light irradiation (5 J/cm2, 15 min), twice a week for 3 weeks.


Journal of Physical Chemistry A | 2009

Metal-Olefin Bond Energies in M(CO)5(C2H4-nCln) M = Cr, Mo, W; n = 0-4: Electron-Withdrawing Olefins Do Not Increase the Bond Strength

Darin N. Schlappi; David L. Cedeño

Metal-olefin bond dissociation enthalpies have been calculated for the series of complexes M(CO)5(C2H(4-n)Cln), M = Cr, Mo, W; n = 0-4 using density functional theory. Experimental values of the bond enthalpies have been measured for M(CO)5(C2H(4-n)Cln) M = Cr, Mo, W; n = 2 (vinyl chloride), 3, and 4 using laser photoacoustic calorimetry in n-hexane solution. Experimental and calculated values indicate that the trend in metal-olefin bond energies is opposite to the electron-withdrawing ability of the olefin, which is counter to expectations based on the Dewar-Chatt-Duncanson model for metal-olefin bonding. An in-depth analysis of the metal-olefin interaction using a bond energy decomposition scheme implies that the observed and calculated decreasing trend is influenced by the increase in steric interactions and olefin reorganizational energy which is concomitant to the increase of the number of electron-withdrawing halogen atoms.

Collaboration


Dive into the David L. Cedeño's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dana M. Tilley

Illinois State University

View shared research outputs
Top Co-Authors

Avatar

Ramsin Benyamin

Illinois State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge