Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Daleke is active.

Publication


Featured researches published by David L. Daleke.


Journal of Cell Biology | 2001

Phosphatidylserine (PS) induces PS receptor–mediated macropinocytosis and promotes clearance of apoptotic cells

Peter R. Hoffmann; Aimee deCathelineau; Carol Anne Ogden; Yann Leverrier; Donna L. Bratton; David L. Daleke; Anne J. Ridley; Valerie A. Fadok; Peter M. Henson

Efficient phagocytosis of apoptotic cells is important for normal tissue development, homeostasis, and the resolution of inflammation. Although many receptors have been implicated in the clearance of apoptotic cells, the roles of these receptors in the engulfment process have not been well defined. We developed a novel system to distinguish between receptors involved in tethering of apoptotic cells versus those inducing their uptake. Our results suggest that regardless of the receptors engaged on the phagocyte, ingestion does not occur in the absence of phosphatidylserine (PS). Further, recognition of PS was found to be dependent on the presence of the PS receptor (PSR). Both PS and anti-PSR antibodies stimulated membrane ruffling, vesicle formation, and “bystander” uptake of cells bound to the surface of the phagocyte. We propose that the phagocytosis of apoptotic cells requires two events: tethering followed by PS-stimulated, PSR-mediated macropinocytosis.


Cell Biochemistry and Biophysics | 2005

The Role of Oxidative Stress in Diabetic Complications

Dana M. Niedowicz; David L. Daleke

The morbidity and mortality associated with diabetes is the result of the myriad complications related to the disease. One of the most explored hypotheses to explain the onset of complications is a hyperglycemia-induced increase in oxidative stress. Reactive oxygen species (ROS) are produced by oxidative phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase (NADPH), xanthine oxidase, the uncoupling of lipoxygenases, cytochrome P450 monooxygenases, and glucose autoxidation. Once formed, ROS deplete antioxidant defenses, rendering the affected cells and tissues more susceptible to oxidative damage. Lipid, DNA, and protein are the cellular targets for oxidation, leading to changes in cellular structure and function. Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression. This review explores the production of ROS and the propagation and consequences of oxidative stress in diabetes.


Biochimica et Biophysica Acta | 1990

Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay

David L. Daleke; Keelung Hong; Demetrios Papahadjopoulos

The interaction of liposomes with macrophage cells was monitored by a new fluorescence method (Hong, K., Straubinger, R.M. and Papahadjopoulos, D., J. Cell Biol. 103 (1986) 56a) that allows for the simultaneous monitoring of binding, endocytosis, acidification and leakage. Profound differences in uptake, cell surface-induced leakage and leakage subsequent to endocytosis were measured in liposomes of varying composition. Pyranine (1-hydroxypyrene-3,6,8-trisulfonic acid, HPTS), a highly fluorescent, water-soluble, pH sensitive dye, was encapsulated at high concentration into the lumen of large unilamellar vesicles. HPTS exhibits two major fluorescence excitation maxima (403 and 450 nm) which have a complementary pH dependence in the range 5-9: the peak at 403 nm is maximal at low pH values while the peak at 450 nm is maximal at high pH values. The intra- and extracellular distribution of liposomes and their approximate pH was observed by fluorescence microscopy using appropriate excitation and barrier filters. The uptake of liposomal contents by cells and their subsequent exposure to acidified endosomes or secondary lysosomes was monitored by spectrofluorometry via alterations in the fluorescence excitation maxima. The concentration of dye associated with cells was determined by measuring fluorescence at a pH independent point (413 nm). The average pH of cell-associated dye was determined by normalizing peak fluorescence intensities (403 nm and 450 nm) to fluorescence at 413 nm and comparing these ratios to a standard curve. HPTS-containing liposomes bound to and were acidified by a cultured murine macrophage cell line (J774) with a t1/2 of 15-20 min. The acidification of liposomes exhibited biphasic kinetics and 50-80% of the liposomes reached an average pH lower than 6 within 2 h. A liposomal lipid marker exhibited a rate of uptake similar to HPTS, however the lipid component selectively accumulated in the cell; after an initial rapid release of liposome contents, 2.5-fold more lipid marker than liposomal contents remained associated with the cells after 5 h. Coating haptenated liposomes with antibody protected liposomes from the initial release. The leakage of liposomal contents was monitored by co-encapsulating HPTS and p-xylene-bis-pyridinium bromide, a fluorescence quencher, into liposomes. The time course of dilution of liposome contents, detected as an increase in HPTS fluorescence, was coincident with the acidification of HPTS. The rate and extent of uptake of neutral and negatively charged liposomes was similar; however, liposomes opsonized with antibody were incorporated at a higher rate (2.9-fold) and to a greater extent (3.4-fold).(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Immunology | 2005

Interaction between Phosphatidylserine and the Phosphatidylserine Receptor Inhibits Immune Responses In Vivo

Peter R. Hoffmann; Jennifer A. Kench; Andrea Vondracek; Ellen R. Kruk; David L. Daleke; Michael I. Jordan; Philippa Marrack; Peter M. Henson; Valerie A. Fadok

Phosphatidylserine (PS) on apoptotic cells promotes their uptake and induces anti-inflammatory responses in phagocytes, including TGF-β release. Little is known regarding the effects of PS on adaptive immune responses. We therefore investigated the effects of PS-containing liposomes on immune responses in mice in vivo. PS liposomes specifically inhibited responses to Ags as determined by decreased draining lymph node tissue mass, with reduced numbers of total leukocytes and Ag-specific CD4+ T cells. There was also a decrease in formation and size of germinal centers in spleen and lymph nodes, accompanied by decreased levels of Ag-specific IgG in blood. Many of these effects were mimicked by an agonistic Ab-specific for the PS receptor. TGF-β appears to play a critical role in this inhibition, as the inhibitory effects of PS were reversed by in vivo administration of anti-TGF-β Ab. PS-containing liposomes did not appear to directly inhibit dendritic cell maturation in vitro in response to a variety of stimuli, nor did it prevent their migration to regional lymph nodes in vivo, suggesting that the inhibitory effects may have resulted from complicated interactions between tissue cells and dendritic cells, subsequently inhibiting their ability to productively activate T lymphocytes.


Current Opinion in Hematology | 2008

Regulation of phospholipid asymmetry in the erythrocyte membrane

David L. Daleke

Purpose of reviewAlterations in the transbilayer distribution of phospholipids in the erythrocyte membrane have significant physiologic consequences. Understanding the cause of these perturbations and the molecular mechanisms by which they are regulated is essential for ameliorating some of the consequences of erythrocyte membrane abnormalities. This review summarizes recent data that provide a clearer description of the molecular events involved in these processes. Recent findingsProteomic and molecular evidence supports the presence of a small number of lipid transporters that control the distribution of phospholipids across the erythrocyte membrane. These include members of the ATP-binding cassette and P-type ATPase transporter families. Recent data indicate that these proteins work in synergy and may require additional protein partners. Growing evidence illustrates the critical role these transporters play in the maintenance of lipid asymmetry and the central role that oxidative damage plays in the membrane perturbing effects of some cardiovascular diseases. SummaryRecent publications have added further clarity to the processes that control phospholipid asymmetry in erythrocytes and the mechanisms by which diseases affect lipid distribution. Transmembrane transporters regulate the organization of phospholipids across the bilayer, and oxidative damage induced by disease states may be a common perturbant of phospholipid asymmetry.


Free Radical Research | 2000

Glutathione loading prevents free radical injury in red blood cells after storage.

U.J. Dumaswala; Mj Wilson; Y.L. Wu; J. Wykle; L. Zhuo; L.M. Douglass; David L. Daleke

We have previously demonstrated that the loss of glutathione (GSH) and GSH-peroxidase (GSH-PX) in banked red blood cells (RBCs) is accompanied by oxidative modifications of lipids, proteins and loss of membrane integrity[1]. The objective of this study was to determine whether artificial increases in antioxidant (GSH) or antioxidant enzyme (catalase) content could protect membrane damage in the banked RBCs following an oxidant challenge. RBCs stored at 1–6°C for 0, 42 and 84 days in a conventional additive solution (Adsol®) were subjected to oxidative stress using ferric/ascorbic acid (Fe/ASC) before and after enriching them with GSH or catalase using a hypotonic lysis-isoosmotic resealing procedure. This lysis-resealing procedure in the presence of GSH/catalase raised intracellular GSH and catalase concentrations 4–6 fold, yet produced only a small reduction in mean cell volume (MCV), mean cell hemoglobin (MCH) and mean cell hemoglobin concentrations (MCHC). Indicators of oxidative stress and membrane integrity were measured, including acetylcholinesterase (AChE) activity, GSH concentration, phosphatidylserine (PS) externalization (prothrombin-converting activity) and transmembrane lipid movements (14C-lyso phosphatidylcholine flip-flop and PS transport). GSH-enrichment protected AChE activity in fresh (0 day) and stored (42 and 84 days) RBCs from Fe/ASC oxidation by 10, 23 and 26%, respectively, compared with not-enriched controls. Following oxidative stress, the rate of transbilayer lipid flip-flop did not increase in fresh cells, but increased 9.3% in 42-day stored cells. Phosphatidylserine exposure, as measured by prothrombinase activity, increased 2.4-fold in fresh and 5.2-fold in 42-day stored cells exposed to Fe/ASC. Previous studies have shown that 42-day storage causes a moderate decrease in PS transport (∼ 50 %), whereas transport rates declined by up to 75% in stored RBCs when challenged with Fe/ASC. GSH-enrichment prevented the increase in passive lipid flip-flop and the increase in prothrombinase activity, but offered no protection against oxidative damage of PS transport. In contrast to these effects, catalase-enrichment failed to protect GSH levels and AChE activity upon oxidative stress. Membrane protein thiol oxidation was assessed by labeling reactive protein thiols with 5-acetalamidofluorescein followed by immunoblotting with antifluorescein antibodies. Significant oxidation of membrane proteins was confirmed by a greater loss of thiols in stored RBCs than in fresh RBCs. These results demonstrate that it may be possible to prevent storage-mediated loss of AChE, increased lipid flip-flop, and increased PS exposure, by maintaining or increasing GSH levels of banked RBCs.


Journal of Biological Chemistry | 2011

The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1 PURIFICATION, CHARACTERIZATION, AND THE EFFECT OF LIPIDS ON ITS ACTIVITY

Magdalena Marek; Sigrid Milles; Gabriele Schreiber; David L. Daleke; Gunnar Dittmar; Andreas Herrmann; Peter K. Müller; Thomas Pomorski

The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.


Biochimica et Biophysica Acta | 1982

Calmodulin-dependent spectrin kinase activity in resealed human erythrocyte ghosts

Mark Nelson; David L. Daleke; Wray H. Huestis

Membrane protein phosphorylation has been studied in resealed human erythrocyte ghosts by measuring the incorporation of 32P into spectrin and band 3. Norepinephrine- and Ca2+-stimulated phosphate incorporation was diminished in ghosts depleted of calmodulin. Ghosts prepared with endogenous calmodulin showed Ca2+- and norepinephrine-stimulated protein phosphorylation only when the ghosts had been resealed in the presence of (gamma-32P)ATP. Ghosts resealed with or without calmodulin in the presence of unlabeled ATP showed no net gain or loss of 32P when exposed to norepinephrine or a Ca2+-specific ionophore. These observations suggest that Ca2+ and norepinephrine stimulation of membrane protein phosphorylation is mediated by calmodulin-dependent spectrin kinase activity, and not by increased turnover of spectrin ATPase or by inhibition of phosphospectrin phosphatase.


Molecular BioSystems | 2009

Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin

Jennifer A. Meyer; Wasanthi Subasinghe; Anders A. F. Sima; Zachary Keltner; Gavin E. Reid; David L. Daleke; Dana M. Spence

Insulin resistance can broadly be defined as the diminished ability of cells to respond to the action of insulin in transporting glucose from the bloodstream into cells and tissues. Here, we report that erythrocytes (ERYs) obtained from type 2 diabetic rats display an apparent resistance to Zn(2+)-activated C-peptide. Thus, the aims of this study were to demonstrate that Zn(2+)-activated C-peptide exerts potentially beneficial effects on healthy ERYs and that these same effects on type 2 diabetic ERYs are enhanced in the presence of metformin. Incubation of ERYs (obtained from type 2 diabetic BBZDR/Wor-rats) with Zn(2+)-activated C-peptide followed by chemiluminescence measurements of ATP resulted in a 31.2 +/- 4.0% increase in ATP release from these ERYs compared to a 78.4 +/- 4.9% increase from control ERYs. Glucose accumulation in diabetic ERYs, measured by scintillation counting of (14)C-labeled glucose, increased by 35.8 +/- 1.3% in the presence of the Zn(2+)-activated C-peptide, a value significantly lower than results obtained from control ERYs (64.3 +/- 5.1%). When Zn(2+)-activated C-peptide was exogenously added to diabetic ERYs, immunoassays revealed a 32.5 +/- 8.2% increase in C-peptide absorbance compared to a 64.4 +/- 10.3% increase in control ERYs. Phosphatidylserine (PS) externalization and metformin sensitization of Zn(2+)-activated C-peptide were examined spectrofluorometrically by measuring the binding of FITC-labeled annexin to PS. The incubation of diabetic ERYs with metformin prior to the addition of Zn(2+)-activated C-peptide resulted in values that were statistically equivalent to those of controls. Summarily, data obtained here demonstrate an apparent resistance to Zn(2+)-activated C-peptide by the ERY that is corrected by metformin.


Biochimica et Biophysica Acta | 1993

Dithiothreitol stimulates the activity of the plasma membrane aminophospholipid translocator

Hoai-Thu N. Truong; David L. Daleke; Wray H. Huestis

Metabolic depletion induces human erythrocytes to crenate, a shape change that is reversed when ATP is regenerated by nutrient supplementation. In the presence of the sulfhydryl reducing agent dithiothreitol (DTT), this shape reversal is exaggerated, proceeding beyond normal discoid morphology to stomatocytic forms. DTT-induced stomatocytosis does not correlate consistently with alterations in cell ATP, spectrin phosphorylation, or phosphoinositide metabolism (Truong, H.-T.N., Ferrell, J.E., Jr. and Huestis, W.H. (1986) Blood 67, 214-221). The effect of DTT on outer-to-inner-monolayer transport of aminophospholipids was examined by monitoring shape changes induced by dilauroylphosphatidylserine (DLPS). Stomatocytosis induced by transport of this exogenous lipid to the membrane inner monolayer is accelerated and exaggerated by DTT. The effect of DTT on DLPS translocation is reversible and temperature dependent, consistent with the intervention of reducing agents in the activity of the aminophospholipid translocator. These findings bear on the relationship between cell redox status and shape regulation.

Collaboration


Dive into the David L. Daleke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mj Wilson

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Daryl C. Drummond

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Peter M. Henson

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

U.J. Dumaswala

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Valerie A. Fadok

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Srivastava

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge