Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David L. Hu is active.

Publication


Featured researches published by David L. Hu.


Nature | 2003

The Hydrodynamics of Water Strider Locomotion

David L. Hu; Brian Chan; John W. M. Bush

Water striders Gerridae are insects of characteristic length 1 cm and weight 10 dynes that reside on the surface of ponds, rivers, and the open ocean. Their weight is supported by the surface tension force generated by curvature of the free surface, and they propel themselves by driving their central pair of hydrophobic legs in a sculling motion. Previous investigators have assumed that the hydrodynamic propulsion of the water strider relies on momentum transfer by surface waves. This assumption leads to Dennys paradox: infant water striders, whose legs are too slow to generate waves, should be incapable of propelling themselves along the surface. We here resolve this paradox through reporting the results of high-speed video and particle-tracking studies. Experiments reveal that the strider transfers momentum to the underlying fluid not primarily through capillary waves, but rather through hemispherical vortices shed by its driving legs. This insight guided us in constructing a self-contained mechanical water strider whose means of propulsion is analogous to that of its natural counterpart.


Advances in Insect Physiology | 2007

The Integument of Water-walking Arthropods: Form and Function

John W. M. Bush; David L. Hu; Manu Prakash

Abstract We develop a coherent view of the form and function of the integument of water-walking insects and spiders by reviewing biological work on the subject in light of recent advances in surface science. Particular attention is given to understanding the complex nature of the interaction between water-walking arthropods and the air–water surface. We begin with a discussion of the fundamental principles of surface tension and the wetting of a solid by a fluid. These basic concepts are applied to rationalize the form of various body parts of water-walking arthropods according to their function. Particular attention is given to the influence of surface roughness on water-repellency, a critical feature of water-walkers that enables them to avoid entrapment at the interface, survive the impact of raindrops and breathe if submerged. The dynamic roles of specific surface features in thrust generation, drag reduction and anchoring on the free surface are considered. New imaging techniques that promise important insights into this class of problems are discussed. Finally, we highlight the interplay between the biology, physics and engineering communities responsible for the rapid recent advances in the biomimetic design of smart, water-repellent surfaces.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The mechanics of slithering locomotion

David L. Hu; Jasmine A. Nirody; Terri Scott; Michael Shelley

In this experimental and theoretical study, we investigate the slithering of snakes on flat surfaces. Previous studies of slithering have rested on the assumption that snakes slither by pushing laterally against rocks and branches. In this study, we develop a theoretical model for slithering locomotion by observing snake motion kinematics and experimentally measuring the friction coefficients of snakeskin. Our predictions of body speed show good agreement with observations, demonstrating that snake propulsion on flat ground, and possibly in general, relies critically on the frictional anisotropy of their scales. We have also highlighted the importance of weight distribution in lateral undulation, previously difficult to visualize and hence assumed uniform. The ability to redistribute weight, clearly of importance when appendages are airborne in limbed locomotion, has a much broader generality, as shown by its role in improving limbless locomotion.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Fire ants self-assemble into waterproof rafts to survive floods

Nathan Mlot; Craig A. Tovey; David L. Hu

Why does a single fire ant Solenopsis invicta struggle in water, whereas a group can float effortlessly for days? We use time-lapse photography to investigate how fire ants S. invicta link their bodies together to build waterproof rafts. Although water repellency in nature has been previously viewed as a static material property of plant leaves and insect cuticles, we here demonstrate a self-assembled hydrophobic surface. We find that ants can considerably enhance their water repellency by linking their bodies together, a process analogous to the weaving of a waterproof fabric. We present a model for the rate of raft construction based on observations of ant trajectories atop the raft. Central to the construction process is the trapping of ants at the raft edge by their neighbors, suggesting that some “cooperative” behaviors may rely upon coercion.


Journal of Fluid Mechanics | 2010

The hydrodynamics of water-walking arthropods

David L. Hu; John W. M. Bush

We present the results of a combined experimental and theoretical investigation of the dynamics of water-walking insects and spiders. Using high-speed videography, we describe their numerous gaits, some analogous to those of their terrestrial counterparts, others specialized for life at the interface. The critical role of the rough surface of these water walkers in both floatation and propulsion is demonstrated. Their waxy, hairy surface ensures that their legs remain in a water-repellent state, that the bulk of their leg is not wetted, but rather contact with the water arises exclusively through individual hairs. Maintaining this water-repellent state requires that the speed of their driving legs does not exceed a critical wetting speed. Flow visualization reveals that the wakes of most water walkers are characterized by a series of coherent subsurface vortices shed by the driving stroke. A theoretical framework is developed in order to describe the propulsion in terms of the transfer of forces and momentum between the creature and its environment. The application of the conservation of momentum to biolocomotion at the interface confirms that the propulsion of water walkers may be rationalized in terms of the subsurface flows generated by their driving stroke. The two principal modes of propulsion available to small water walkers are elucidated. At driving leg speeds in excess of the capillary wave speed, macroscopic curvature forces are generated by deforming the meniscus, and the surface behaves effectively as a trampoline. For slower speeds, the driving legs need not substantially deform the surface but may instead simply brush it: the resulting contact or viscous forces acting on the leg hairs crossing the interface serve to propel the creature forward.


Experiments in Fluids | 2007

Water-walking devices

David L. Hu; Manu Prakash; Brian Chan; John W. M. Bush

We report recent efforts in the design and construction of water-walking machines inspired by insects and spiders. The fundamental physical constraints on the size, proportion and dynamics of natural water-walkers are enumerated and used as design criteria for analogous mechanical devices. We report devices capable of rowing along the surface, leaping off the surface and climbing menisci by deforming the free surface. The most critical design constraint is that the devices be lightweight and non-wetting. Microscale manufacturing techniques and new man-made materials such as hydrophobic coatings and thermally actuated wires are implemented. Using high-speed cinematography and flow visualization, we compare the functionality and dynamics of our devices with those of their natural counterparts.


Journal of the Royal Society Interface | 2012

Friction enhancement in concertina locomotion of snakes

Hamidreza Marvi; David L. Hu

Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mosquitoes survive raindrop collisions by virtue of their low mass

Andrew Dickerson; Peter G. Shankles; Nihar Madhavan; David L. Hu

In the study of insect flight, adaptations to complex flight conditions such as wind and rain are poorly understood. Mosquitoes thrive in areas of high humidity and rainfall, in which raindrops can weigh more than 50 times a mosquito. In this combined experimental and theoretical study, we here show that free-flying mosquitoes can survive the high-speed impact of falling raindrops. High-speed videography of those impacts reveals a mechanism for survival: A mosquito’s strong exoskeleton and low mass renders it impervious to falling drops. The mosquito’s low mass causes raindrops to lose little momentum upon impact and so impart correspondingly low forces to the mosquitoes. Our findings demonstrate that small fliers are robust to in-flight perturbations.


The Journal of Experimental Biology | 2014

Fire ants actively control spacing and orientation within self-assemblages

Paul C. Foster; Nathan Mlot; Angela Lin; David L. Hu

To overcome obstacles and survive harsh environments, fire ants link their bodies together to form self-assemblages such as rafts, bridges and bivouacs. Such structures are examples of self-assembling and self-healing materials, as ants can quickly create and break links with one another in response to changes in their environment. Because ants are opaque, the arrangement of the ants within these three-dimensional networks was previously unknown. In this experimental study, we applied micro-scale computed tomography, or micro-CT, to visualize the connectivity, arrangement and orientation of ants within an assemblage. We identified active and geometric mechanisms that ants use to obtain favorable packing properties with respect to well-studied packing of inert objects such as cylinders. Ants use their legs to push against their neighbors, doubling their spacing relative to random packing of cylinders. These legs also permit active control of their orientation, an ability ants use to arrange themselves perpendicularly rather than in parallel. Lastly, we found an important role of ant polymorphism in promoting self-aggregation: a large distribution of ant sizes permits small ants to fit between the legs of larger ants, a phenomenon that increases the number of average connections per ant. These combined mechanisms lead to low packing fraction and high connectivity, which increase raft buoyancy and strength during flash floods.


Journal of the Royal Society Interface | 2012

Wet mammals shake at tuned frequencies to dry

Andrew Dickerson; Zachary Mills; David L. Hu

In cold wet weather, mammals face hypothermia if they cannot dry themselves. By rapidly oscillating their bodies, through a process similar to shivering, furry mammals can dry themselves within seconds. We use high-speed videography and fur particle tracking to characterize the shakes of 33 animals (16 animals species and five dog breeds), ranging over four orders of magnitude in mass from mice to bears. We here report the power law relationship between shaking frequency f and body mass M to be f ∼ M−0.22, which is close to our prediction of f ∼ M−0.19 based upon the balance of centrifugal and capillary forces. We also observe a novel role for loose mammalian dermal tissue: by whipping around the body, it increases the speed of drops leaving the animal and the ensuing dryness relative to tight dermal tissue.

Collaboration


Dive into the David L. Hu's collaboration.

Top Co-Authors

Avatar

John W. M. Bush

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Dickerson

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel I. Goldman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Guillermo J. Amador

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Patricia J. Yang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hamidreza Marvi

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathan Mlot

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Alexeev

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sulisay Phonekeo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Scott Franklin

Rochester Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge