David L. Masica
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David L. Masica.
Nature Genetics | 2013
Patrick R. Sosnay; Karen R Siklosi; Fredrick Van Goor; Kyle Kaniecki; H. Yu; Neeraj Sharma; Anabela S. Ramalho; Margarida D. Amaral; Ruslan Dorfman; Julian Zielenski; David L. Masica; Rachel Karchin; Linda Millen; Philip J. Thomas; George P. Patrinos; Mary Corey; Michelle Huckaby Lewis; Johanna M. Rommens; Carlo Castellani; Christopher M. Penland; Garry R. Cutting
Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation into clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator gene CFTR have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 individuals with cystic fibrosis in registries and clinics in North America and Europe. In these individuals, 159 CFTR variants had an allele frequency of ł0.01%. These variants were evaluated for both clinical severity and functional consequence, with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of individuals with cystic fibrosis enabled assignment of 12 of the remaining 32 variants as neutral, whereas the other 20 variants remained of indeterminate effect. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically relevant genomic variation.
Gastroenterology | 2015
Simeon Springer; Yuxuan Wang; Marco Dal Molin; David L. Masica; Yuchen Jiao; Isaac Kinde; Amanda Blackford; Siva P. Raman; Christopher L. Wolfgang; Tyler Tomita; Noushin Niknafs; Christopher Douville; Janine Ptak; Lisa Dobbyn; Peter J. Allen; David S. Klimstra; Mark A. Schattner; C. Max Schmidt; Michele T. Yip-Schneider; Oscar W. Cummings; Randall E. Brand; Herbert J. Zeh; Aatur D. Singhi; Aldo Scarpa; Roberto Salvia; Giuseppe Malleo; Giuseppe Zamboni; Massimo Falconi; Jin Young Jang; Sun Whe Kim
BACKGROUND & AIMS The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. METHODS We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. RESULTS We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. CONCLUSIONS We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery.
Journal of Bone and Mineral Research | 2009
William N. Addison; David L. Masica; Jeffrey J. Gray; Marc D. McKee
The SIBLING family (small integrin‐binding ligand N‐linked glycoproteins) of mineral‐regulating proteins, which includes matrix extracellular phosphoglycoprotein (MEPE) and osteopontin (OPN), contains an acidic serine‐ and aspartate‐rich motif (ASARM). X‐linked hypophosphatemia caused by inactivating mutations of the PHEX gene results in elevated mineralization‐inhibiting MEPE‐derived ASARM peptides. Although the OPN ASARM motif shares 60% homology with MEPE ASARM, it is still unknown whether OPN ASARM similarly inhibits mineralization. In this study we have examined the role of OPN ASARM and its interaction with PHEX enzyme using an osteoblast cell culture model, mass spectrometry, mineral‐binding assays, and computational modeling. MC3T3‐E1 osteoblast cultures were treated with differently phosphorylated OPN ASARM peptides [with 5 phosphoserines (OpnAs5) or 3 phosphoserines (OpnAs3)] or with control nonphosphorylated peptide (OpnAs0). Phosphorylated peptides dose‐dependently inhibited mineralization, and binding of phosphorylated peptides to mineral was confirmed by a hydroxyapatite‐binding assay. OpnAs0 showed no binding to hydroxyapatite and did not inhibit culture mineralization. Computational modeling of peptide‐mineral interactions indicated a favorable change in binding energy with increasing phosphorylation consistent with hydroxyapatite‐binding experiments and inhibition of culture mineralization. Addition of PHEX rescued inhibition of mineralization by OpnAs3. Mass spectrometry of cleaved peptides after ASARM‐PHEX incubations identified OpnAs3 as a PHEX substrate. We conclude that OPN ASARM inhibits mineralization by binding to hydroxyapatite in a phosphorylation‐dependent manner and that this inhibitor can be cleaved by PHEX, thus providing a mechanistic explanation for how loss of PHEX activity in X‐linked hyposphosphatemia can lead to extracellular matrix accumulation of ASARM resulting in the osteomalacia.
Cancer Research | 2011
David L. Masica; Rachel Karchin
Cooperative dysregulation of gene sequence and expression may contribute to cancer formation and progression. The Cancer Genome Atlas (TCGA) Network recently catalogued gene sequence and expression data for a collection of glioblastoma multiforme (GBM) tumors. We developed an automated, model-free method to rapidly and exhaustively examine the correlation among somatic mutation and gene expression and interrogated 149 GBM tumor samples from the TCGA. The method identified 41 genes whose mutation status is highly correlated with drastic changes in the expression (z-score ± 2.0), across tumor samples, of other genes. Some of the 41 genes have been previously implicated in GBM pathogenesis (e.g., NF1, TP53, RB1, and IDH1) and others, while implicated in cancer, had not previously been highlighted in studies using TCGA data (e.g., SYNE1, KLF6, FGFR4, and EPHB4). The method also predicted that known oncogenes and tumor suppressors participate in GBM via drastic over- and underexpression, respectively. In addition, the method identified a known synthetic lethal interaction between TP53 and PLK1, other potential synthetic lethal interactions with TP53, and correlations between IDH1 mutation status and the overexpression of known GBM survival genes.
Hepatology | 2014
Ling Li; David L. Masica; Masaharu Ishida; Ciprian Tomuleasa; Sho Umegaki; Anthony N. Kalloo; Christos S. Georgiades; Vikesh K. Singh; Mouen A. Khashab; Stuart K. Amateau; Zhiping Li; Patrick I. Okolo; Anne Marie Lennon; Payal Saxena; Jean Francois H Geschwind; Todd Schlachter; Kelvin Hong; Timothy M. Pawlik; Marcia I. Canto; Joanna Law; Reem Z. Sharaiha; Clifford R. Weiss; Paul J. Thuluvath; Michael Goggins; Eun Ji Shin; Haoran Peng; Vivek Kumbhari; Susan Hutfless; Liya Zhou; Esteban Mezey
Cholangiocarcinoma (CCA) presents significant diagnostic challenges, resulting in late patient diagnosis and poor survival rates. Primary sclerosing cholangitis (PSC) patients pose a particularly difficult clinical dilemma because they harbor chronic biliary strictures that are difficult to distinguish from CCA. MicroRNAs (miRs) have recently emerged as a valuable class of diagnostic markers; however, thus far, neither extracellular vesicles (EVs) nor miRs within EVs have been investigated in human bile. We aimed to comprehensively characterize human biliary EVs, including their miR content. We have established the presence of extracellular vesicles in human bile. In addition, we have demonstrated that human biliary EVs contain abundant miR species, which are stable and therefore amenable to the development of disease marker panels. Furthermore, we have characterized the protein content, size, numbers, and size distribution of human biliary EVs. Utilizing multivariate organization of combinatorial alterations (MOCA), we defined a novel biliary vesicle miR‐based panel for CCA diagnosis that demonstrated a sensitivity of 67% and specificity of 96%. Importantly, our control group contained 13 PSC patients, 16 with biliary obstruction of varying etiologies (including benign biliary stricture, papillary stenosis, choledocholithiasis, extrinsic compression from pancreatic cysts, and cholangitis), and 3 with bile leak syndromes. Clinically, these types of patients present with a biliary obstructive clinical picture that could be confused with CCA. Conclusion: These findings establish the importance of using extracellular vesicles, rather than whole bile, for developing miR‐based disease markers in bile. Finally, we report on the development of a novel bile‐based CCA diagnostic panel that is stable, reproducible, and has potential clinical utility. (Hepatology 2014;60:896–907)
Journal of Dental Research | 2011
Marc D. McKee; Y. Nakano; David L. Masica; Jeffrey J. Gray; I. Lemire; R. Heft; Michael P. Whyte; P. Crine; José Luis Millán
Hypophosphatasia (HPP) occurs from loss-of-function mutation in the tissue-non-specific alkaline phosphatase (TNALP) gene, resulting in extracellular pyrophosphate accumulation that inhibits skeletal and dental mineralization. TNALP-null mice (Akp2 -/- ) phenocopy human infantile hypophosphatasia; they develop rickets at 1 week of age, and die before being weaned, having severe skeletal and dental hypomineralization and episodes of apnea and vitamin B6-responsive seizures. Delay and defects in dentin mineralization, together with a deficiency in acellular cementum, are characteristic. We report the prevention of these dental abnormalities in Akp2 -/- mice receiving treatment from birth with daily injections of a mineral-targeting, human TNALP (sALP-FcD10). sALP-FcD10 prevented hypomineralization of alveolar bone, dentin, and cementum as assessed by micro-computed tomography and histology. Osteopontin – a marker of acellular cementum – was immuno-localized along root surfaces, confirming that acellular cementum, typically missing or reduced in Akp2 -/- mice, formed normally. Our findings provide insight concerning how acellular cementum is formed on tooth surfaces to effect periodontal ligament attachment to retain teeth in their osseous alveolar sockets. Furthermore, they provide evidence that this enzyme-replacement therapy, applied early in post-natal life – where the majority of tooth root development occurs, including acellular cementum formation – could prevent the accelerated tooth loss seen in individuals with HPP.
Annals of Oncology | 2015
Christine H. Chung; Violeta Beleva Guthrie; David L. Masica; Collin Tokheim; Hyunseok Kang; Jeremy D. Richmon; Nishant Agrawal; Carole Fakhry; Harry Quon; Rathan M. Subramaniam; Z. Zuo; Tanguy Y. Seiwert; Zachary R. Chalmers; Garrett Michael Frampton; Siraj M. Ali; R. Yelensky; Philip J. Stephens; Vincent A. Miller; Rachel Karchin; Justin A. Bishop
BACKGROUND To determine genomic alterations in head and neck squamous cell carcinoma (HNSCC) using formalin-fixed, paraffin-embedded (FFPE) tumors obtained through routine clinical practice, selected cancer-related genes were evaluated and compared with alterations seen in frozen tumors obtained through research studies. PATIENTS AND METHODS DNA samples obtained from 252 FFPE HNSCC were analyzed using next-generation sequencing-based (NGS) clinical assay to determine sequence and copy number variations in 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. Human papillomavirus (HPV) status was determined by presence of the HPV DNA sequence in all samples and corroborated with high-risk HPV in situ hybridization (ISH) and p16 immunohistochemical (IHC) staining in a subset of tumors. Sequencing data from 399 frozen tumors in The Cancer Genome Atlas and University of Chicago public datasets were analyzed for comparison. RESULTS Among 252 FFPE HNSCC, 84 (33%) were HPV positive and 168 (67%) were HPV negative by sequencing. A subset of 40 tumors with HPV ISH and p16 IHC results showed complete concordance with NGS-derived HPV status. The most common genes with genomic alterations were PIK3CA and PTEN in HPV-positive tumors and TP53 and CDKN2A/B in HPV-negative tumors. In the pathway analysis, the PI3K pathway in HPV-positive tumors and DNA repair-p53 and cell cycle pathways in HPV-negative tumors were frequently altered. The HPV-positive oropharynx and HPV-positive nasal cavity/paranasal sinus carcinoma shared similar mutational profiles. CONCLUSION The genomic profile of FFPE HNSCC tumors obtained through routine clinical practice is comparable with frozen tumors studied in research setting, demonstrating the feasibility of comprehensive genomic profiling in a clinical setting. However, the clinical significance of these genomic alterations requires further investigation through application of these genomic profiles as integral biomarkers in clinical trials.BACKGROUND To determine genomic alterations in head and neck squamous cell carcinoma (HNSCC) using formalin-fixed, paraffin-embedded (FFPE) tumors obtained through routine clinical practice, selected cancer-related genes were evaluated and compared with alterations seen in frozen tumors obtained through research studies. PATIENTS AND METHODS DNA samples obtained from 252 FFPE HNSCC were analyzed using next-generation sequencing-based (NGS) clinical assay to determine sequence and copy number variations in 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. Human papillomavirus (HPV) status was determined by presence of the HPV DNA sequence in all samples and corroborated with high-risk HPV in situ hybridization (ISH) and p16 immunohistochemical (IHC) staining in a subset of tumors. Sequencing data from 399 frozen tumors in The Cancer Genome Atlas and University of Chicago public datasets were analyzed for comparison. RESULTS Among 252 FFPE HNSCC, 84 (33%) were HPV positive and 168 (67%) were HPV negative by sequencing. A subset of 40 tumors with HPV ISH and p16 IHC results showed complete concordance with NGS-derived HPV status. The most common genes with genomic alterations were PIK3CA and PTEN in HPV-positive tumors and TP53 and CDKN2A/B in HPV-negative tumors. In the pathway analysis, the PI3K pathway in HPV-positive tumors and DNA repair-p53 and cell cycle pathways in HPV-negative tumors were frequently altered. The HPV-positive oropharynx and HPV-positive nasal cavity/paranasal sinus carcinoma shared similar mutational profiles. CONCLUSION The genomic profile of FFPE HNSCC tumors obtained through routine clinical practice is comparable with frozen tumors studied in research setting, demonstrating the feasibility of comprehensive genomic profiling in a clinical setting. However, the clinical significance of these genomic alterations requires further investigation through application of these genomic profiles as integral biomarkers in clinical trials.
Proteins | 2005
Michael D. Daily; David L. Masica; Arvind Sivasubramanian; Sony Somarouthu; Jeffrey J. Gray
CAPRI Rounds 3, 4, and 5 are the first public test of the published RosettaDock algorithm. The targets cover a wide range of sizes and shapes. For most targets, published biological information indicated the region of the binding site on at least one docking partner. The RosettaDock algorithm produced high accuracy predictions for three targets, medium‐accuracy predictions for two targets, and an acceptable prediction for one target. RosettaDock predicted all five targets with less than 450 residues to high or medium accuracy, but it predicted only one of seven targets with above 450 residues to acceptable accuracy. RosettaDocks high‐accuracy predictions for small to moderately large targets reveal the predictive power and fidelity of the algorithm, especially the high‐resolution refinement and scoring protocol. In addition, RosettaDock can predict complexes from at least one homology‐modeled docking partner with comparable accuracy to unbound cases of similar size. Larger targets present a more intensive sampling problem, and some large targets present repulsive barriers to entering the binding site. Ongoing improvements to RosettaDocks low‐resolution search may alleviate this problem. This first public test suggests that RosettaDock can be useful in a significant range of applications in biochemistry and cell biology. Proteins 2005;60:181–186.
Journal of Biological Chemistry | 2009
Yung Ching Chien; David L. Masica; Jeffrey J. Gray; Sarah Nguyen; Hojatollah Vali; Marc D. McKee
Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp86–93). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp86–93 dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp86–93 followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp86–93 adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp86–93 sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp86–93 domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).
Biophysical Journal | 2009
David L. Masica; Jeffrey J. Gray
We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherins helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces.