Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Llobet-Navas is active.

Publication


Featured researches published by David Llobet-Navas.


Nature Medicine | 2014

A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia.

Daniel Herranz; Alberto Ambesi-Impiombato; Teresa Palomero; Stephanie A. Schnell; Laura Belver; Agnieszka A. Wendorff; Luyao Xu; Mireia Castillo-Martin; David Llobet-Navas; Carlos Cordon-Cardo; Emmanuelle Clappier; Jean Soulier; Adolfo A. Ferrando

Efforts to identify and annotate cancer driver genetic lesions have been focused primarily on the analysis of protein-coding genes; however, most genetic abnormalities found in human cancer are located in intergenic regions. Here we identify a new long range–acting MYC enhancer controlled by NOTCH1 that is targeted by recurrent chromosomal duplications in human T cell acute lymphoblastic leukemia (T-ALL). This highly conserved regulatory element, hereby named N-Me for NOTCH MYC enhancer, is located within a broad super-enhancer region +1.47 Mb from the MYC transcription initiating site, interacts with the MYC proximal promoter and induces orientation-independent MYC expression in reporter assays. Moreover, analysis of N-Me knockout mice demonstrates a selective and essential role of this regulatory element during thymocyte development and in NOTCH1-induced T-ALL. Together these results identify N-Me as a long-range oncogenic enhancer implicated directly in the pathogenesis of human leukemia and highlight the importance of the NOTCH1-MYC regulatory axis in T cell transformation and as a therapeutic target in T-ALL.Efforts to identify and annotate cancer driver genetic lesions have been almost exclusively focused on the analysis of protein coding genes. Here we identify a new long-range acting MYC enhancer controlled by NOTCH1, targeted by recurrent chromosomal duplications in human T-cell acute lymphoblastic leukemia (T-ALL). This highly conserved regulatory element, hereby named N-Me for NOTCH MYC enhancer, is located within a broad super-enhancer region +1.47 Mb from the MYC transcription initiating site, interacts with the MYC proximal promoter and induces orientation-independent MYC expression in reporter assays. Moreover, analysis of N-Me knockout mice demonstrates a selective and essential role of this regulatory element during thymocyte development and in NOTCH1-induced T-ALL. Altogether, these results identify N-Me as a long range oncogenic enhancer directly implicated in the pathogenesis of human leukemia and highlight the fundamental importance of the NOTCH1-MYC regulatory axis in T-cell transformation and as therapeutic target in T-ALL.


Cell | 2014

Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers

Felix Sanchez-Garcia; Patricia Villagrasa; Junji Matsui; Dylan Kotliar; Veronica Castro; Uri-David Akavia; Bo-Juen Chen; Laura Saucedo-Cuevas; Ruth Rodriguez Barrueco; David Llobet-Navas; Jose M. Silva; Dana Pe’er

Identifying driver genes in cancer remains a crucial bottleneck in therapeutic development and basic understanding of the disease. We developed Helios, an algorithm that integrates genomic data from primary tumors with data from functional RNAi screens to pinpoint driver genes within large recurrently amplified regions of DNA. Applying Helios to breast cancer data identified a set of candidate drivers highly enriched with known drivers (p < 10(-14)). Nine of ten top-scoring Helios genes are known drivers of breast cancer, and in vitro validation of 12 candidates predicted by Helios found ten conferred enhanced anchorage-independent growth, demonstrating Helioss exquisite sensitivity and specificity. We extensively characterized RSF-1, a driver identified by Helios whose amplification correlates with poor prognosis, and found increased tumorigenesis and metastasis in mouse models. We have demonstrated a powerful approach for identifying driver genes and how it can yield important insights into cancer.


Genome Research | 2015

Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks

Hua-Sheng Chiu; David Llobet-Navas; Xuerui Yang; Wei-Jen Chung; Alberto Ambesi-Impiombato; Archana Iyer; Hyunjae Ryan Kim; Elena G. Seviour; Zijun Luo; Vasudha Sehgal; Tyler Moss; Yiling Lu; Prahlad T. Ram; Jose M. Silva; Gordon B. Mills; Pavel Sumazin

We introduce a method for simultaneous prediction of microRNA-target interactions and their mediated competitive endogenous RNA (ceRNA) interactions. Using high-throughput validation assays in breast cancer cell lines, we show that our integrative approach significantly improves on microRNA-target prediction accuracy as assessed by both mRNA and protein level measurements. Our biochemical assays support nearly 500 microRNA-target interactions with evidence for regulation in breast cancer tumors. Moreover, these assays constitute the most extensive validation platform for computationally inferred networks of microRNA-target interactions in breast cancer tumors, providing a useful benchmark to ascertain future improvements.


Genes & Development | 2014

The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland

David Llobet-Navas; Ruth Rodriguez-Barrueco; Veronica Castro; Alejandro P. Ugalde; Pavel Sumazin; Damian Jacob-Sendler; Berna Demircan; Mireia Castillo-Martin; Preeti Putcha; Netonia Marshall; Patricia Villagrasa; Joseph Chan; Felix Sanchez-Garcia; Dana Pe’er; Raul Rabadan; Antonio Iavarone; Carlos Cordon-Cardo; Carlos López-Otín; Elena Ezhkova; Jose M. Silva

The mammary gland is a very dynamic organ that undergoes continuous remodeling. The critical regulators of this process are not fully understood. Here we identify the microRNA cluster miR-424(322)/503 as an important regulator of epithelial involution after pregnancy. Through the generation of a knockout mouse model, we found that regression of the secretory acini of the mammary gland was compromised in the absence of miR-424(322)/503. Mechanistically, we show that miR-424(322)/503 orchestrates cell life and death decisions by targeting BCL-2 and IGF1R (insulin growth factor-1 receptor). Furthermore, we demonstrate that the expression of this microRNA cluster is regulated by TGF-β, a well-characterized regulator of mammary involution. Overall, our data suggest a model in which activation of the TGF-β pathway after weaning induces the transcription of miR-424(322)/503, which in turn down-regulates the expression of key genes. Here, we unveil a previously unknown, multilayered regulation of epithelial tissue remodeling coordinated by the microRNA cluster miR-424(322)/503.


Genes & Development | 2015

Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR−/HER2+ breast cancers

Ruth Rodriguez-Barrueco; Jiyang Yu; Laura Saucedo-Cuevas; Mireia Olivan; David Llobet-Navas; Preeti Putcha; Veronica Castro; Eva Murga-Penas; Ana Collazo-Lorduy; Mireia Castillo-Martin; Mariano J. Alvarez; Carlos Cordon-Cardo; Kevin Kalinsky; Matthew Maurer; Jose M. Silva

HER2-positive (HER2(+)) breast adenocarcinomas are a heterogeneous group in which hormone receptor (HR) status influences therapeutic decisions and patient outcome. By combining genome-wide RNAi screens with regulatory network analysis, we identified STAT3 as a critically activated master regulator of HR(-)/HER2(+) tumors, eliciting tumor dependency in these cells. Mechanistically, HR(-)/HER2(+) cells secrete high levels of the interleukin-6 (IL-6) cytokine, inducing the activation of STAT3, which in turn promotes a second autocrine stimulus to increase S100A8/9 complex (calprotectin) production and secretion. Increased calprotectin levels activate signaling pathways involved in proliferation and resistance. Importantly, we demonstrated that inhibition of the IL-6-Janus kinase 2 (JAK2)-STAT3-calprotectin axis with FDA-approved drugs, alone and in combination with HER2 inhibitors, reduced the tumorigenicity of HR(-)/HER2(+) breast cancers, opening novel targeted therapeutic opportunities.


Molecular and Cellular Biology | 2014

The MicroRNA 424/503 Cluster Reduces CDC25A Expression during Cell Cycle Arrest Imposed by Transforming Growth Factor β in Mammary Epithelial Cells

David Llobet-Navas; Ruth Rodriguez-Barrueco; Janis de la Iglesia-Vicente; Mireia Olivan; Veronica Castro; Laura Saucedo-Cuevas; Netonia Marshall; Preeti Putcha; Mireia Castillo-Martin; Evan S. Bardot; Elena Ezhkova; Antonio Iavarone; Carlos Cordon-Cardo; Jose M. Silva

ABSTRACT Recently, we demonstrated that the microRNA 424(322)/503 [miR-424(322)/503] cluster is transcriptionally controlled by transforming growth factor β (TGF-β) in the mammary epithelium. Induction of this microRNA cluster impacts mammary epithelium fate by regulating apoptosis and insulin-like growth factor 1 (IGF1) signaling. Here, we expanded our finding to demonstrate that miR-424(322)/503 is an integral component of the cell cycle arrest mediated by TGF-β. Mechanistically, we showed that after TGF-β exposure, increased levels of miR-424(322)/503 reduce the expression of the cell cycle regulator CDC25A. miR-424(322)/503-dependent posttranscriptional downregulation of CDC25A cooperates with previously described transcriptional repression of the CDC25A promoter and proteasome-mediated degradation to reduce the levels of CDC25A expression and to induce cell cycle arrest. We also provide evidence that the TGF-β/miR-424(322)/503 axis is part of the mechanism that regulates the proliferation of hormone receptor-positive (HR+) mammary epithelial cells in vivo.


Genes & Development | 2017

miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy

Ruth Rodriguez-Barrueco; Erin A. Nekritz; François Bertucci; Jiyang Yu; Felix Sanchez-Garcia; Tizita Z. Zeleke; Andrej Gorbatenko; Daniel Birnbaum; Elena Ezhkova; Carlos Cordon-Cardo; Pascal Finetti; David Llobet-Navas; Jose M. Silva

The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.


Advances in Experimental Medicine and Biology | 2017

Endometrial Carcinoma: Specific Targeted Pathways

Nuria Eritja; Bo-Juen Chen; David Llobet-Navas; Eugenia Ortega; Eva Colás; Miguel Abal; Xavier Dolcet; Jaume Reventos; Xavier Matias-Guiu

Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.


Cell Death & Differentiation | 2017

A Smad3-PTEN regulatory loop controls proliferation and apoptotic responses to TGF-β in mouse endometrium

Nuria Eritja; Isidre Felip; Mari Alba Dosil; Lucia Vigezzi; Cristina Mirantes; Raúl Navaridas; Maria Santacana; David Llobet-Navas; Akihiko Yoshimura; Masatoshi Nomura; Mario Encinas; Xavier Matias-Guiu; Xavi Dolcet

The TGF-β/Smad and the PI3K/AKT signaling pathways are important regulators of proliferation and apoptosis, and their alterations lead to cancer development. TGF-β acts as a tumor suppressor in premalignant cells, but it is a tumor promoter for cancerous cells. Such dichotomous actions are dictated by different cellular contexts. Here, we have unveiled a PTEN-Smad3 regulatory loop that provides a new insight in the complex cross talk between TGF-β/Smad and PI3K/AKT signaling pathways. We demonstrate that TGF-β triggers apoptosis of wild-type polarized endometrial epithelial cells by a Smad3-dependent activation of PTEN transcription, which results in the inhibition of PI3K/AKT signaling pathway. We show that specific Smad3 knockdown or knockout reduces basal and TGF-β-induced PTEN expression in endometrial cells, resulting in a blockade of TGF-β-induced apoptosis and an enhancement of cell proliferation. Likewise Smad3 deletion, PTEN knockout prevents TGF-β-induced apoptosis and increases cell proliferation by increasing PI3K/AKT/mTOR signaling. In summary, our results demonstrate that Smad3-PTEN signaling axis determine cellular responses to TGF-β.


Cell Death and Disease | 2016

Overexpression of JARID1B promotes differentiation via SHIP1/AKT signaling in human hypopharyngeal squamous cell carcinoma.

Jisheng Zhang; Xiaofei An; Yafei Han; Rui Ma; Kun Yang; Lu Zhang; Jingwei Chi; Wei Li; David Llobet-Navas; Yan Xu; Yan Jiang

Histone H3 (H3K4) demethylase JARID1B is aberrantly upregulated in many types of tumor and has been proposed to function as oncogene. Here we show that JARID1B is elevated in moderate and high-differentiated human hypopharyngeal squamous cell carcinoma (HPSCC) compared with low-differentiated HPSCC. Overexpression of JARID1B in FaDu cells increased epithelial differentiation marker K10 expression and inhibited cell proliferation. JARID1B and K10 mRNA expression is high correlated in HPSCC patients. Mechanistically, we found JARID1B directly bound to PI3K/AKT signaling inhibitor SHIP1 gene promoter and decreased SHIP1 gene expression. Activation of downstream AKT resulted in increased β-catenin signaling, by which promoted target genes Fra-1 and Jun, together with other AP-1 transcription factors, leading to K10 expression. Forced expression of SHIP1 rescued JARID1B-induced phenotypes on FaDu cell differentiation and proliferation. Taken together, our findings provide first evidence that elevated expression of JARID1B has a critical role in promoting HPSCC differentiation and inhibiting proliferation, suggesting JARID1B may function as a tumor suppressor in squamous cell cancers and implying a novel important therapeutic strategy of HPSCC.

Collaboration


Dive into the David Llobet-Navas's collaboration.

Top Co-Authors

Avatar

Jose M. Silva

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Carlos Cordon-Cardo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ruth Rodriguez-Barrueco

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Saucedo-Cuevas

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Mireia Castillo-Martin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge