Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Duda is active.

Publication


Featured researches published by David M. Duda.


Cell | 2008

Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation

David M. Duda; Laura A. Borg; Daniel C. Scott; Harold W. Hunt; Michal Hammel; Brenda A. Schulman

Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8~Cul5(ctd)-Rbx1 and SAXS analysis of NEDD8~Cul1(ctd)-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.


Molecular Cell | 2009

Insights into Ubiquitin Transfer Cascades from a Structure of a UbcH5B∼Ubiquitin-HECTNEDD4L Complex

Hari B. Kamadurai; Judith Souphron; Daniel C. Scott; David M. Duda; Darcie J. Miller; Daniel K. Stringer; Robert C. Piper; Brenda A. Schulman

In E1-E2-E3 ubiquitin (Ub) conjugation cascades, the E2 first forms a transient E2 approximately Ub covalent complex and then interacts with an E3 for Ub transfer. For cascades involving E3s in the HECT class, Ub is transferred from an associated E2 to the acceptor cysteine in the HECT domain C lobe. To gain insights into this process, we determined the crystal structure of a complex between the HECT domain of NEDD4L and the E2 UbcH5B bearing a covalently linked Ub at its active site (UbcH5B approximately Ub). Noncovalent interactions between UbcH5B and the HECT N lobe and between Ub and the HECT domain C lobe lead to an overall compact structure, with the Ub C terminus sandwiched between UbcH5B and HECT domain active sites. The structure suggests a model for E2-to-HECT Ub transfer, in which interactions between a donor Ub and an acceptor domain constrain upstream and downstream enzymes for conjugation.


Molecular Cell | 2009

E2-RING Expansion of the NEDD8 Cascade Confers Specificity to Cullin Modification

Danny T. Huang; Olivier Ayrault; Harold W. Hunt; Asad M. Taherbhoy; David M. Duda; Daniel C. Scott; Laura A. Borg; Geoffrey Neale; Peter J. Murray; Martine F. Roussel; Brenda A. Schulman

Ubiquitin and ubiquitin-like proteins (UBLs) are directed to targets by cascades of E1, E2, and E3 enzymes. The largest ubiquitin E3 subclass consists of cullin-RING ligases (CRLs), which contain one each of several cullins (CUL1, -2, -3, -4, or -5) and RING proteins (RBX1 or -2). CRLs are activated by ligation of the UBL NEDD8 to a conserved cullin lysine. How is cullin NEDD8ylation specificity established? Here we report that, like UBE2M (also known as UBC12), the previously uncharacterized E2 UBE2F is a NEDD8-conjugating enzyme in vitro and in vivo. Biochemical and structural analyses indicate how plasticity of hydrophobic E1-E2 interactions and E1 conformational flexibility allow one E1 to charge multiple E2s. The E2s have distinct functions, with UBE2M/RBX1 and UBE2F/RBX2 displaying different target cullin specificities. Together, these studies reveal the molecular basis for and functional importance of hierarchical expansion of the NEDD8 conjugation system in establishing selective CRL activation.


Current Opinion in Structural Biology | 2011

Structural regulation of cullin-RING ubiquitin ligase complexes

David M. Duda; Daniel C. Scott; Matthew F. Calabrese; Erik Zimmerman; Ning Zheng; Brenda A. Schulman

Cullin-RING ligases (CRLs) compose the largest class of E3 ubiquitin ligases. CRLs are modular, multisubunit enzymes, comprising interchangeable substrate receptors dedicated to particular Cullin-RING catalytic cores. Recent structural studies have revealed numerous ways in which CRL E3 ligase activities are controlled, including multimodal E3 ligase activation by covalent attachment of the ubiquitin-like protein NEDD8, inhibition of CRL assembly/activity by CAND1, and several mechanisms of regulated substrate recruitment. These features highlight the potential for CRL activities to be tuned in responses to diverse cellular cues, and for modulating CRL functions through small-molecule agonists or antagonists. As the second installment of a two-review series, this article focuses on recent structural studies advancing our knowledge of how CRL activities are regulated.


Nature Structural & Molecular Biology | 2005

E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer

Ziad M. Eletr; Danny T. Huang; David M. Duda; Brenda A. Schulman; Brian Kuhlman

During ubiquitin ligation, an E2 conjugating enzyme receives ubiquitin from an E1 enzyme and then interacts with an E3 ligase to modify substrates. Competitive binding experiments with three human E2-E3 protein pairs show that the binding of E1s and of E3s to E2s are mutually exclusive. These results imply that polyubiquitination requires recycling of E2 for addition of successive ubiquitins to substrate.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy

Alban Ordureau; Jin-Mi Heo; David M. Duda; Joao A. Paulo; Jennifer L. Olszewski; David Yanishevski; Jesse Rinehart; Brenda A. Schulman; J. Wade Harper

Significance PINK1 protein kinase and PARKIN UB ligase are mutated in inherited forms of Parkinson’s disease and several cancers. Thus, it is of great significance to understand normal functions that could be disrupted in disease. A role for PARKIN and PINK1 is in mediating autophagy of damaged mitochondria (mitophagy) through polyubiquitylation of numerous mitochondrial outer membrane proteins in a reaction that involves phosphorylation of both PARKIN and ubiquitin (UB) by PINK1. The mechanism remains unclear, however, due to challenges in defining individual steps in the pathway. Here, we use a UB replacement system to elucidate steps in the pathway that require PARKIN and/or UB phosphorylation by PINK1 and provide evidence of a PINK1- and UB-driven feed-forward mechanism important for efficient mitochondrial ubiquitylation and mitophagy. The PTEN-induced putative kinase protein 1 (PINK1) and ubiquitin (UB) ligase PARKIN direct damaged mitochondria for mitophagy. PINK1 promotes PARKIN recruitment to the mitochondrial outer membrane (MOM) for ubiquitylation of MOM proteins with canonical and noncanonical UB chains. PINK1 phosphorylates both Ser65 (S65) in the UB-like domain of PARKIN and the conserved Ser in UB itself, but the temporal sequence and relative importance of these events during PARKIN activation and mitochondria quality control remain poorly understood. Using “UBS65A-replacement,” we find that PARKIN phosphorylation and activation, and ubiquitylation of Lys residues on a cohort of MOM proteins, occur similarly irrespective of the ability of the UB-replacement to be phosphorylated on S65. In contrast, polyubiquitin (poly-UB) chain synthesis, PARKIN retention on the MOM, and mitophagy are reduced in UBS65A-replacement cells. Analogous experiments examining roles of individual UB chain linkage types revealed the importance of K6 and K63 chain linkages in mitophagy, but phosphorylation of K63 chains by PINK1 did not enhance binding to candidate mitophagy receptors optineurin (OPTN), sequestosome-1 (p62), and nuclear dot protein 52 (NDP52) in vitro. Parallel reaction monitoring proteomics of total mitochondria revealed the absence of p-S65-UB when PARKIN cannot build UB chains, and <0.16% of the monomeric UB pool underwent S65 phosphorylation upon mitochondrial damage. Combining p-S65-UB and p-S65-PARKIN in vitro showed accelerated transfer of nonphosphorylated UB to PARKIN itself, its substrate mitochondrial Rho GTPase (MIRO), and UB. Our data further define a feed-forward mitochondrial ubiquitylation pathway involving PARKIN activation upon phosphorylation, UB chain synthesis on the MOM, UB chain phosphorylation, and further PARKIN recruitment and enzymatic amplification via binding to phosphorylated UB chains.


Oncogene | 2004

Ubiquitin-like protein activation

Danny T. Huang; Helen Walden; David M. Duda; Brenda A. Schulman

Post-translational covalent attachment of ubiquitin and ubiquitin-like proteins (ubls) has emerged as a predominant cellular regulatory mechanism, with important roles in controlling cell division, signal transduction, embryonic development, endocytic trafficking and the immune response. Ubls function by remodeling the surface of their target proteins, changing their targets half-life, enzymatic activity, protein–protein interactions, subcellular localization or other properties. At least 10 different ubiquitin-like modifications exist in mammals, and attachment of different ubls to a target leads to different biological consequences. Ubl-conjugation cascades are initiated by activating enzymes, which also coordinate the ubls with their downstream pathways. A number of biochemical and structural studies have provided insights into the mechanism of ubl-activating enzymes and their roles in ubl conjugation cascades.


PLOS Pathogens | 2010

Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways

Grégory Jubelin; Frédéric Taieb; David M. Duda; Yun Hsu; Ascel Samba-Louaka; Rika Nobe; Marie Penary; Claude Watrin; Jean-Philippe Nougayrède; Brenda A. Schulman; C. Erec Stebbins; Eric Oswald

The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria.


The EMBO Journal | 2013

TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin‐RING ligase complexes

Ian R. Kelsall; David M. Duda; Jennifer L. Olszewski; Kay Hofmann; Axel Knebel; Frédéric Langevin; Nicola T. Wood; Melanie Wightman; Brenda A. Schulman; Arno F. Alpi

RING (Really Interesting New Gene)‐in‐between‐RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc‐binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto‐inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin‐RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto‐ubiquitylation, their ability to stimulate dissociation of a thioester‐linked UBCH7∼ubiquitin intermediate, and reactivity with ubiquitin‐vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL‐induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs.


Molecular Cell | 2012

The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7

Adriana E. Tron; Takehiro Arai; David M. Duda; Hiroshi Kuwabara; Jennifer L. Olszewski; Yuko Fujiwara; Brittany Bahamon; Sabina Signoretti; Brenda A. Schulman; James A. DeCaprio

Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM.

Collaboration


Dive into the David M. Duda's collaboration.

Top Co-Authors

Avatar

Brenda A. Schulman

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Olszewski

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Scott

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Darcie J. Miller

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew F. Calabrese

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Amanda Nourse

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Danny T. Huang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Hari B. Kamadurai

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge