Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Findlay is active.

Publication


Featured researches published by David M. Findlay.


PLOS ONE | 2011

Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway

Asiri R. Wijenayaka; Masakazu Kogawa; Hui Peng Lim; Lynda F. Bonewald; David M. Findlay; Gerald J. Atkins

Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANKL∶OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.


Journal of Bone and Mineral Research | 2003

RANKL expression is related to the differentiation state of human osteoblasts

Gerald J. Atkins; P. Kostakis; Beiqing Pan; Amanda N. Farrugia; Stan Gronthos; Andreas Evdokiou; Kate Harrison; David M. Findlay; Andrew C.W. Zannettino

Human osteoblast phenotypes that support osteoclast differentiation and bone formation are not well characterized. Osteoblast differentiation markers were examined in relation to RANKL expression. RANKL expression was induced preferentially in immature cells. These results support an important link between diverse osteoblast functions.


Calcified Tissue International | 1985

Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin

S. M. Forrest; K. W. Ng; David M. Findlay; V.P. Michelangeli; S. A. Livesey; N. C. Partridge; Jeffrey D. Zajac; T. J. Martin

SummaryThe clonal cell line UMR 106, which was originally derived from a rat transplantable osteogenic sarcoma with an osteoblastic phenotype, was subcloned after the emergence of a calcitonin-responsive adenylate cyclase was noted in late passages. Detailed studies on the stimulation of adenylate cyclase and activation profile of the cyclic AMP-dependent protein kinase isoenzymes in response to parathyroid hormone (PTH) and salmon calcitonin (SCT) were conducted on two subclones (UMR 106-01 and UMR 106-06). Both subclones responded in an identical manner to PTH, which stimulated adenylate cyclase and activated both isoenzyme I and isoenzyme II of cyclic AMP-dependent protein kinase. In contrast, only UMR 106-06 cells responded to calcitonin. At 3×10−8M SCT, there was a sevenfold stimulation of adenylate cyclase, 84% activation of isoenzyme I, and 44% activation of isoenzyme II. The activation profiles of the isoenzymes to PTH and SCT in UMR 106-06 were similar. Furthermore, their response to SCT correlates with the presence of specific, saturable binding of125I-labeled SCT. Binding parameters indicate apparent Kd=0.8 nM and 6,000 receptors/cell. These data point to a significant phenotypic change having taken place in this clonal cell line with prolonged maintenance in culture, with the emergence of a calcitonin receptor linked to adenylate cyclase and protein kinase activation.


Journal of Bone and Joint Surgery-british Volume | 2001

The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis

Tania N. Crotti; A. E. Potter; M. Loric; G. Atkins; Donald W. Howie; David M. Findlay

Extensive osteolysis adjacent to implants is often associated with wear particles of prosthetic material. We have investigated if RANKL, also known as osteoprotegerin ligand, osteoclast differentiation factor or TRANCE, and its natural inhibitor, osteoprotegerin (OPG), may be important in controlling this bone loss. Cells isolated from periprosthetic tissues containing wear particles expressed mRNA encoding for the pro-osteoclastogenic molecules, RANKL, its receptor RANK, monocyte colony-stimulating factor (M-CSF), interleukin (IL)-1beta, tumour necrosis factor (TNF)alpha, IL-6, and soluble IL-6 receptor, as well as OPG. Osteoclasts formed from cells isolated from periprosthetic tissues in the presence and absence of human osteoblastic cells. When osteoclasts formed in the absence of osteoblastic cells, markedly higher levels of RANKL mRNA relative to OPG mRNA were expressed. Particles of prosthetic materials also stimulated human monocytes to express osteoclastogenic molecules in vitro. Our results suggest that ingestion of prosthetic wear particles by macrophages results in expression of osteoclast-differentiating molecules and the stimulation of macrophage differentiation into osteoclasts.


Journal of Bone and Mineral Research | 2011

Sclerostin is a locally acting regulator of late‐osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE‐ASARM‐dependent mechanism

Gerald J. Atkins; Peter S. N. Rowe; Hui P Lim; Katie J. Welldon; Renee T. Ormsby; Asiri R. Wijenayaka; Lesya Zelenchuk; Andreas Evdokiou; David M. Findlay

The identity of the cell type responsive to sclerostin, a negative regulator of bone mass, is unknown. Since sclerostin is expressed in vivo by mineral‐embedded osteocytes, we tested the hypothesis that sclerostin would regulate the behavior of cells actively involved in mineralization in adult bone, the preosteocyte. Differentiating cultures of human primary osteoblasts exposed to recombinant human sclerostin (rhSCL) for 35 days displayed dose‐ and time‐dependent inhibition of in vitro mineralization, with late cultures being most responsive in terms of mineralization and gene expression. Treatment of advanced (day 35) cultures with rhSCL markedly increased the expression of the preosteocyte marker E11 and decreased the expression of mature markers DMP1 and SOST. Concomitantly, matrix extracellular phosphoglycoprotein (MEPE) expression was increased by rhSCL at both the mRNA and protein levels, whereas PHEX was decreased, implying regulation through the MEPE‐ASARM axis. We confirmed that mineralization by human osteoblasts is exquisitely sensitive to the triphosphorylated ASARM‐PO4 peptide. Immunostaining revealed that rhSCL increased the endogenous levels of MEPE‐ASARM. Importantly, antibody‐mediated neutralization of endogenous MEPE‐ASARM antagonized the effect of rhSCL on mineralization, as did the PHEX synthetic peptide SPR4. Finally, we found elevated Sost mRNA expression in the long bones of HYP mice, suggesting that sclerostin may drive the increased MEPE‐ASARM levels and mineralization defect in this genotype. Our results suggest that sclerostin acts through regulation of the PHEX/MEPE axis at the preosteocyte stage and serves as a master regulator of physiologic bone mineralization, consistent with its localization in vivo and its established role in the inhibition of bone formation.


Journal of Bone and Mineral Research | 2010

Expression of Osteoclast Differentiation Signals by Stromal Elements of Giant Cell Tumors

Gerald J. Atkins; Stephen Graves; Andreas Evdokiou; Shelley Hay; S Bouralexis; David M. Findlay

The mechanisms by which primary tumors of the bone cause bone destruction have not been elucidated. Unlike most other lytic bone tumors, osteoclastomas, otherwise known as giant cell tumors (GCT), contain osteoclast‐like cells within the tumor stroma. A new member of the TNF‐ligand superfamily member, osteoclast differentiation factor (ODF/OPGL/RANKL/TRANCE), was recently identified. ODF was shown to directly stimulate osteoclastogenesis, in the presence of M‐CSF. In this study, the expression of ODF was examined in a number of tumor samples associated with bone lysis in vivo. In addition, we investigated expression of the ODF receptor on osteoclast precursors, RANK, as well as the ODF inhibitor osteoprotegerin (OPG), and another TNF‐ligand superfamily member, TRAIL, previously shown to abrogate the inhibitory effects of OPG. We report here the novel finding that GCT stromal cells contain abundant ODF mRNA, whereas the giant cell population exclusively expresses RANK mRNA. These results are consistent with the osteoclast‐mediated bone destruction by these tumors. We also report the expression of OPG and TRAIL mRNA in GCT samples. A comparison with other lytic and nonlytic tumors of bone showed that GCT express more ODF and TRAIL mRNA relative to OPG mRNA. In addition, GCT were found to express a number of cytokines previously reported to play central roles in osteoclastogenesis, namely, IL‐1, −6, −11, −17, as well as TNF‐α. Importantly, GCT were also found to express high levels of M‐CSF mRNA, a cytokine shown to be an essential cofactor of ODF, and a survival factor for mature and developing osteoclasts. Furthermore, expression of these molecules by stromal cells isolated from GCT continued in vitro. Thus GCT constitutively express all of the signals that are currently understood to be necessary for the differentiation of osteoclasts from precursor cells.


Acta Biomaterialia | 2012

Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.

Karan Gulati; Saminathan Ramakrishnan; Moom Sinn Aw; Gerald J. Atkins; David M. Findlay; Dusan Losic

Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice.


Journal of Immunology | 2006

TWEAK Is a Novel Arthritogenic Mediator

Stuart J. Perper; Beth Browning; Linda C. Burkly; Shawn Weng; Cindy Gao; Keith Giza; Lihe Su; Leticia Tarilonte; Thomas Crowell; Luis Rajman; Laura Runkel; Martin L. Scott; Gerald J. Atkins; David M. Findlay; Timothy S. Zheng; Henry Hess

TNF-like weak inducer of apoptosis (TWEAK) is a TNF family member with pleiotropic effects on a variety of cell types, one of which is the induction of proinflammatory cytokines by synovial fibroblasts derived from rheumatoid arthritis (RA) patients. In this study, we report that the serum TWEAK level was dramatically elevated during mouse collagen-induced arthritis (CIA) and blocking TWEAK by a neutralizing mAb significantly reduced the clinical severity of CIA. Histological analyses also revealed that TWEAK inhibition diminished joint inflammation, synovial angiogenesis, as well as cartilage and bone erosion. Anti-TWEAK treatment proved efficacious when administered just before the disease onset but not during the priming phase of CIA. Consistent with this, TWEAK inhibition did not affect either cellular or humoral responses to collagen. In contrast, TWEAK inhibition significantly reduced serum levels of a panel of arthritogenic mediators, including chemokines such as MIP-1β (CCL-4), lymphotactin (XCL-1), IFN-γ-inducible protein 10 (IP-10) (CXCL-10), MCP-1 (CCL-2), and RANTES (CCL-5), as well as the matrix metalloprotease-9. Exploring the possible role of the TWEAK/Fn14 pathway in human RA pathogenesis, we showed that TWEAK can target human primary chondrocytes and osteoblast-like cells, in addition to synovial fibroblasts. We further demonstrated that TWEAK induced the production of matrix metalloproteases in human chondrocytes and potently inhibited chondrogenesis and osteogenesis using in vitro models. These results provide evidence for a novel cytokine pathway that contributes to joint tissue inflammation, angiogenesis, and damage, as well as may inhibit endogenous repair, suggesting that TWEAK may be a new therapeutic target for human RA.


Journal of Bone and Mineral Research | 2009

Pro-Inflammatory Cytokines TNF-Related Weak Inducer of Apoptosis (TWEAK) and TNFα Induce the Mitogen-Activated Protein Kinase (MAPK)-Dependent Expression of Sclerostin in Human Osteoblasts †‡

Cristina Vincent; David M. Findlay; Katie J. Welldon; Asiri R. Wijenayaka; Timothy S. Zheng; Nicola L. Fazzalari; Andreas Evdokiou; Gerald J. Atkins

We have recently shown that TNF‐related weak inducer of apoptosis (TWEAK) is a mediator of inflammatory bone remodeling. The aim of this study was to investigate the role of TWEAK in modulating human osteoblast activity, and how TWEAK and TNFα might interact in this context. Recombinant TWEAK and TNF were both mitogenic for human primary osteoblasts (NHBC). TWEAK dose‐ and time‐dependently regulated the expression of the osteoblast transcription factors RUNX2 and osterix. TWEAK inhibited in vitro mineralization and downregulated the expression of osteogenesis‐associated genes. Significantly, TWEAK and TWEAK/TNF induced the expression of the osteoblast differentiation inhibitor and SOST gene product, sclerostin. Sclerostin induction was mitogen‐activated protein kinase (MAPK) dependent. The SOST mRNA levels induced by TWEAK were equivalent to or exceeded those seen in steady‐state human bone, and the TWEAK/TNF induction of SOST mRNA was recapitulated in fresh cancellous bone explants. TWEAK‐induced sclerostin expression was observed in immature osteoblastic cells, both in cycling (Ki67+) primary NHBC and in the cell lines MC3T3‐E1 and MG‐63, as well as in human osteocyte‐like cells and in the osteocyte cell line, MLO‐Y4. Treatment of NHBC with recombinant human sclerostin mimicked the effects of TWEAK to suppress RUNX2 and osteocalcin (OCN). TWEAK, TNF, and sclerostin treatment of NHBC similarly altered levels of phosphorylated and total GSK3β and active and total levels of β‐catenin, implying that the Wnt signaling pathway was affected by all three stimuli. Sclerostin also rapidly activated ERK‐1/2 MAPK signaling, indicating the involvement of additional signaling pathways. Together, our findings suggest that TWEAK, alone and with TNF, can regulate osteoblast function, at least in part by inducing sclerostin expression. Our results also suggest new roles and modes of action for sclerostin.


Journal of Cellular Physiology | 2005

Osteoprotegerin (OPG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor†

Andrew C.W. Zannettino; Christopher A. Holding; Peter Diamond; Gerald J. Atkins; P. Kostakis; Amanda N. Farrugia; Jennifer R. Gamble; L. B. To; David M. Findlay

Recent studies demonstrate roles for osteoprotegerin (OPG) in both skeletal and extra‐skeletal tissues. Although its role in preventing osteoclast (OC) formation and activity is well documented, emerging evidence suggests a role of OPG in endothelial cell survival and the prevention of arterial calcification. In this communication, we show that vascular endothelial cells in situ, and human umbilical vein endothelial cells (HUVEC) in vitro, express abundant OPG. In HUVEC, OPG co‐localizes with P‐selectin and von Willebrand factor (vWF), within the Weibel‐Palade bodies (WPB). Treatment of HUVEC with the pro‐inflammatory cytokines, tumor necrosis factor (TNF)‐α and IL‐1β, resulted in mobilization from the WPBs and subsequent secretion of OPG protein into the culture supernatant. Furthermore, TNF‐α treatment of HUVEC resulted in a sustained increase in OPG mRNA levels and protein secretion over the 24‐h treatment period. Reciprocal immunoprecipitation experiments revealed that while not associated with P‐Selectin, OPG is physically complexed with vWF both within the WPB and following secretion from endothelial cells. Interestingly, this association was also identified in human peripheral blood plasma. In addition to its interaction with vWF, we show that OPG also binds with high avidity to the vWF reductase, thrombospondin (TSP‐1), raising the intriguing possibility that OPG may provide a link between TSP‐1 and vWF. In summary, the intracellular localization of OPG in HUVEC, in association with vWF, together with its rapid and sustained secretory response to inflammatory stimuli, strongly support a modulatory role in vascular injury, inflammation and hemostasis.

Collaboration


Dive into the David M. Findlay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. J. Martin

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Atkins

Royal Adelaide Hospital

View shared research outputs
Top Co-Authors

Avatar

Shelley Hay

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Paul H. Anderson

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge