Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Haddleton is active.

Publication


Featured researches published by David M. Haddleton.


Expert Opinion on Drug Delivery | 2008

Advances in PEGylation of important biotech molecules: delivery aspects

Sinéad M. Ryan; Giuseppe Mantovani; Xuexuan Wang; David M. Haddleton; David J. Brayden

Background: Although various injected peptide and protein therapeutics have been developed successfully over the past 25 years, several pharmacokinetic and immunological challenges are still encountered that can limit the efficacy of both novel and established biotech molecules. Objective and method: PEGylation is a popular technique to address such properties. PEGylated drugs exhibit prolonged half-life, higher stability, water solubility, lower immunogenicity and antigenicity, as well as potential for specific cell targeting. Although PEGylated drug conjugates have been on the market for many years, the technology has steadily developed in respect of site-specific chemistry, chain length, molecular weights and purity of conjugate. These developments have occurred in parallel to improvements in physicochemical methods of characterization. Conclusion: This review will discuss recent achievements in PEGylation processes with an emphasis on novel PEG-drugs constructs, the unrealized potential of PEGylation for non-injected routes of delivery, and also on PEGylated versions of polymeric nanoparticles, including dendrimers and liposomes.


Journal of the American Chemical Society | 2013

Aqueous copper-mediated living polymerization : exploiting rapid disproportionation of CuBr with Me6TREN

Qiang Zhang; Paul Wilson; Zaidong Li; Ronan McHale; Jamie Godfrey; Athina Anastasaki; Christopher Waldron; David M. Haddleton

A new approach to perform single-electron transfer living radical polymerization (SET-LRP) in water is described. The key step in this process is to allow full disproportionation of CuBr/Me6TREN (TREN = tris(dimethylamino)ethyl amine to Cu(0) powder and CuBr2 in water prior to addition of both monomer and initiator. This provides an extremely powerful tool for the synthesis of functional water-soluble polymers with controlled chain length and narrow molecular weight distributions (polydispersity index approximately 1.10), including poly(N-isopropylacrylamide), N,N-dimethylacrylamide, poly(ethylene glycol) acrylate, 2-hydroxyethyl acrylate (HEA), and an acrylamido glyco monomer. The polymerizations are performed at or below ambient temperature with quantitative conversions attained in minutes. Polymers have high chain end fidelity capable of undergoing chain extensions to full conversion or multiblock copolymerization via iterative monomer addition after full conversion. Activator generated by electron transfer atom transfer radical polymerization of N-isopropylacrylamide in water was also conducted as a comparison with the SET-LRP system. This shows that the addition sequence of l-ascorbic acid is crucial in determining the onset of disproportionation, or otherwise. Finally, this robust technique was applied to polymerizations under biologically relevant conditions (PBS buffer) and a complex ethanol/water mixture (tequila).


Chemical Reviews | 2016

Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis

Athina Anastasaki; Vasiliki Nikolaou; Gabit Nurumbetov; Paul Wilson; Kristian Kempe; John F. Quinn; Thomas P. Davis; Michael R. Whittaker; David M. Haddleton

Materials Synthesis Athina Anastasaki,†,‡ Vasiliki Nikolaou,† Gabit Nurumbetov,† Paul Wilson,†,‡ Kristian Kempe,†,‡ John F. Quinn,‡ Thomas P. Davis,†,‡ Michael R. Whittaker,†,‡ and David M. Haddleton*,†,‡ †Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom ‡ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia


Angewandte Chemie | 2013

Sequence-controlled multi-block glycopolymers to inhibit DC-SIGN-gp120 binding.

Qiang Zhang; Jennifer Collins; Athina Anastasaki; Russell Wallis; Daniel Anthony Mitchell; C. Remzi Becer; David M. Haddleton

Glycan–protein interactions are essential for many physiological processes including cell–cell recognition, cell adhesion, cell signalling, pathogen identification, and differentiation. Dendritic cell-specific intercellular adhesion molecule3-grabbing non-integrin (DC-SIGN; CD209) is a C-type lectin (carbohydrate-binding protein) present on both macrophages and dendritic cell subpopulations and plays a critical role in many cell interactions. DC-SIGN binds to microorganisms and host molecules by recognizing surface-rich mannose-containing glycans through multivalent glycan– protein interactions and serves as a target for several viruses, such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Carbohydrate-binding proteins (CBP) have been suggested as potential microbicides for the prevention of HIV infection. However, the isolation of natural CBPs is relatively difficult because of their hydrophilic nature and low affinity for the virus. 4] Thus, synthetic lectins are of interest for carbohydrate recognition studies. Alternatively, noncarbohydrate inhibitors of mammalian lectins can be used to prevent the interaction between DC-SIGN and gp120. The structures of these multivalent ligands have a great effect on carbohydrate binding to lectins, and the use of linear polymers to effectively inhibit lectin binding has been demonstrated by several research groups. Synthetic polymer chemistry has developed rapidly in recent years. Currently, polymerization of functional monomers with the desired chain length, structure, and composition is straightforward; whereas producing polymers with monomer sequence control remains challenging, which has implications for the controlled folding of synthetic macromolecules. There are a few recent reports where sufficient control has been achieved in controlling the monomer sequence along the polymer chain. To the best of our knowledge, this is the first report where some control over the relative position of the sugars is exhibited and their binding to the human lectin DC-SIGN is demonstrated. We have used a controlled polymerization technique, single-electron transfer living radical polymerization (SET-LRP), to polymerize glycomonomers, which are prepared by copper catalyzed azide–alkyne click (CuAAC) reaction prior to polymerization. A series of glycomonomers were prepared by reaction of 3-azidopropylacrylate (APA) and alkylated mannose, glucose, and fucose using a Fischer–Helferich glycosylation. This was performed using CuSO4 and sodium ascorbate in a methanol/water mixture (see the Supporting Information). SET-LRP of the glucose monomer (GluA) was performed in dimethylsulfoxide (DMSO) using a copper(0)/copper(II) and tris[2-(dimethylamino)ethyl]amine (Me6TREN)-derived catalyst. Polymerization reached over 90 % monomer conversion in six hours whilst maintaining a narrow molecular weight distribution with increasing molecular weight. (Supporting Information, Figure S4). The obtained polymers were characterized by size exclusion chromatography (SEC) and MALDI-TOF mass spectroscopy (MS) or high-resolution electrospray ionization mass spectroscopy (HR-ESI MS), which indicated very high chain-end fidelity allowing for sequential monomer addition. We designed a polymerization reaction starting with one equivalent of initiator (I) and two equivalents of mannose glycomonomer (ManA; Figure 1a). ManA was fully consumed after 12 hours; then two equivalents of GluA in DMSO were added to the reaction mixture and GluA was consumed in 16 hours. Two equivalents of ManA in DMSO were subsequently added to the reaction mixture, and this cycle was continued until six short blocks of glycopolymers were produced (the degree of polymerization (DP) = 2 for each block, (mannose)2-(glucose)2-(mannose)2-(glucose)2(mannose)2-(glucose)2). No purification steps were required prior to addition of the subsequent monomer. The conversion of the first four blocks, as analyzed by H NMR spectroscopy, reached 100 %, shown by the complete disappearance of vinyl groups at 5.7–6.5 ppm. The glycomonomers were dissolved in purged DMSO prior to their addition and this resulted in further dilution of the reaction mixture upon each monomer addition. Traces of vinyl groups could still be detected after [*] Q. Zhang, J. Collins, A. Anastasaki, Dr. C. R. Becer, Prof. D. M. Haddleton Department of Chemistry, University of Warwick Gibbet Hill Road, Coventry, CV4 7AL (UK) E-mail: [email protected] Homepage: http://www.warwick.ac.uk/go/polymers Dr. R. Wallis Department of Biochemistry, University of Leicester Leicester, LE1 9HN (UK) Dr. D. A. Mitchell Clinical Sciences Research Institute, Warwick Medical School, University of Warwick Coventry, CV2 2DX (UK) [**] We acknowledge financial support from the University of Warwick and the China Scholarship Council. Equipment used in this research was funded by the Innovative Uses for Advanced Materials in the Modern World (AM2) with support from AWM and ERDF. D.M.H. is a Royal Society/Wolfson Fellow and C.R.B. is a Science City Senior Research Fellow. Dr. Christopher N. Scanlan has provided the gp120. Supporting information for this article (syntheses of all materials and details of the characterization methods) is available on the WWW under http://dx.doi.org/10.1002/anie.201300068. Angewandte Chemie


Journal of the American Chemical Society | 2010

High-Affinity Glycopolymer Binding to Human DC-SIGN and Disruption of DC-SIGN Interactions with HIV Envelope Glycoprotein

C. Remzi Becer; Matthew I. Gibson; Jin Geng; Rebecca Ilyas; Russell Wallis; Daniel Anthony Mitchell; David M. Haddleton

Noncovalent interactions between complex carbohydrates and proteins drive many fundamental processes within biological systems, including human immunity. In this report we aimed to investigate the potential of mannose-containing glycopolymers to interact with human DC-SIGN and the ability of these glycopolymers to inhibit the interactions between DC-SIGN and the HIV envelope glycoprotein gp120. We used a library of glycopolymers that are prepared via combination of copper-mediated living radical polymerization and azide−alkyne [3+2] Huisgen cycloaddition reaction. We demonstrate that a relatively simple glycopolymer can effectively prevent the interactions between a human dendritic cell associated lectin (DC-SIGN) and the viral envelope glycoprotein gp120. This approach may give rise to novel insights into the mechanisms of HIV infection and provide potential new therapeutics.


Chemical Science | 2014

Photoinduced sequence-control via one pot living radical polymerization of acrylates

Athina Anastasaki; Vasiliki Nikolaou; George S. Pappas; Qiang Zhang; Chaoying Wan; Paul Wilson; Thomas P. Davis; Michael R. Whittaker; David M. Haddleton

The ability to regulate the activation and deactivation steps via an external stimulus has always been a challenge in polymer chemistry. In an ideal photo-mediated system, whereby high monomer conversion and excellent end group fidelity can be maintained, precise control over the polymer composition and microstructure would be a significant breakthrough. Herein, we report, a versatile, simple and inexpensive method that allows for the synthesis of sequence-controlled multiblock copolymers in a one pot polymerization reaction at ambient temperature. In the absence of a conventional photoredox catalyst and dye-sensitisers, low concentrations of CuBr2 in synergy with Me6-Tren mediate acrylic block copolymerization under UV irradiation (λmax ≈ 360 nm). Four different acrylate monomers were alternated in various combinations within the polymer composition illustrating the potential of the technique. Narrow disperse undecablock copolymers were obtained (Đ < 1.2) with quantitative conversion achieved between the iterative monomer additions. The effect of the chain length was investigated allowing for higher molecular weight multiblock copolymers to be obtained. This approach offers a versatile and inexpensive platform for the preparation of high-order multiblock functional materials with additional applications arising from the precise spatiotemporal “on/off” control and resolution when desired.


Polymer Chemistry | 2014

Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors

Benjamin Wenn; Matthias Conradi; Andre Demetrio Carreiras; David M. Haddleton; Thomas Junkers

Photo-induced copper-mediated radical polymerization of methyl acrylate (MA) is carried out in DMSO at 15 °C in a tubular photo-flow reactor as well as in a glass-chip based microreactor. Polymerization reactions proceed rapidly to approximately 90% monomer conversion within 20 minutes of reactor residence time. Control of reactions is high as evidenced by ideal polymerization kinetics, low dispersities of the obtained polymers (in the range of 1.1) and linear evolution of number average molecular weights during polymerization reactions. Poly(MA) with average molecular weights between a few hundred and ∼5000 g mol−1 was obtained under retention of pristine end group fidelity. Besides homopolymers, block copolymers can also be successfully synthesized and poly(methyl acrylate)-b-poly(butyl acrylate) block copolymers with a similar low dispersity are obtained. Reactions proceed under homogeneous reaction conditions. This feature allows the reaction to be carried out in milli- and also in microflow devices. In both cases, equally good control is achieved with only minimal adaptation of the reaction protocol, underpinning the simplicity and fast adaptability of the protocol to different flow reactors.


Journal of the American Chemical Society | 2012

Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents

Mathew W. Jones; Rachel A. Strickland; Felix F. Schumacher; Stephen Caddick; James R. Baker; Matthew I. Gibson; David M. Haddleton

A series of dibromomaleimides have been shown to be very efficacious at insertion into peptidic disulfide bonds. This conjugation proceeds with a stoichiometric balance of reagents in buffered solutions in less than 15 min to give discrete products while maintaining the disulfide bridge and thus peptide conformation. The insertion is initiated by disulfide reduction using a water-soluble phosphine, tris(2-carboxyethyl)phosphine (TCEP) which allows for subsequent substitution of the two maleimide bromides by the generated thiols. Reaction of salmon calcitonin (sCT) with 2,3-dibromomaleimide (1.1 excess) in the presence of TCEP (1.1 equiv) in aqueous solution at pH 6.2 gives complete production of a single conjugate which requires no workup. A linear methoxy poly(ethylene glycol) (PEG) was functionalized via a Mitsunobu reaction and used for the successful site-specific and rapid pegylation of sCT. This reaction occurs in 15 min with a small stoichiometry excess of the pegylating agent to give insertion at the disulfide with HPLC showing a single product and MALDI-ToF confirming conjugation. Attempts to use the group in a functional ATRP polymerization initiator led to polymerization inhibition. Thus, in order to prepare a range of functional polymers an indirect route was chosen via both azide and aniline functional initiators which were converted to 2,3-dibromomaleimides via appropriate reactions. For example, the azide functional polymer was reacted via a Huisgen CuAAC click reaction to an alkyne functional 2,3-dibromomaleimide. This new reagent allowed for the synthesis of conjugates of sCT with comb polymers derived from PEG methacrylic monomers which in addition gave appropriate cloud points. This reaction represents a highly efficient polymer conjugation method which circumvents problems of purification which normally arise from having to use large excesses of the conjugate. In addition, the tertiary structure of the peptide is efficiently maintained.


Polymer Chemistry | 2015

Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 °C

Fehaid Alsubaie; Athina Anastasaki; Paul Wilson; David M. Haddleton

Aqueous single electron transfer living radical polymerization (SET-LRP) has been employed to synthesize multi-block homopolymers and copolymers of a range of acrylamide monomers including N-isopropylacrylamide (NIPAM), 2-hydroxyethyl acrylamide (HEAA), N,N-dimethyl acrylamide (DMA) and N,N-diethylacrylamide (DEA). Disproportionation of Cu(I)Br in the presence of Me6TREN in water was exploited to generate reactive Cu(0) and [CuII(Me6TREN)]Br2in situ resulting in unprecedented rates of reaction whilst maintaining control over chain lengths and molecular weight distributions (Đ < 1.10). Kinetic studies enabled optimization of iterative chain extensions or block copolymerizations furnishing complex compositions in a matter of minutes/hours. In the multi-block copolymer system, the monomer sequence was successfully varied and limiting effects on the polymerization have been comprehensively examined through a series of control experiments which imply that the rate of ω-Br chain end loss is enhanced in tertiary acrylamides (DMA, DEA, N-acryloylmorpholine NAM) relative to secondary acrylamides (NIPAM, HEAA).


Journal of Polymer Science Part A | 2000

Living polymerization: Rationale for uniform terminology

Thomas Robert Darling; Thomas P. Davis; Michael Fryd; Alexei A. Gridnev; David M. Haddleton; Steven Dale Ittel; Robert R. Matheson; Graeme Moad; Ezio Rizzardo

Polymer chemistry textbooks (e.g., B. Vollmert, Polymer Chemistry, Springer-Verlag: New York, 1973, p 37; G. Odian, Principles of Polymerization, 3rd ed., Wiley: New York, 1991, p 8; H. G. Elias, An Introduction to Polymer Science, VCH: Weinheim, 1997, p 51) classify polymerization reactions as chain, step, and living according to the dependence of their degree of polymerization ( ) or molecular weight ((M) over bar) on conversion. This article discusses the rationale for uniform terminology in living polymerization

Collaboration


Dive into the David M. Haddleton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Remzi Becer

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge