Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Markovitz is active.

Publication


Featured researches published by David M. Markovitz.


Nature Cell Biology | 2003

Vimentin is secreted by activated macrophages

Nirit Mor-Vaknin; Antonello Punturieri; Kajal Sitwala; David M. Markovitz

Vimentin is a widely expressed intermediate filament protein thought to be involved mainly in structural processes, such as wound healing. We now demonstrate that activated human macrophages secrete vimentin into the extracellular space. The maturation of blood-derived monocytes into macrophages involves several signalling pathways. We show that secretion of vimentin, which is phosphorylated at serine and threonine residues, is enhanced by the phosphatase inhibitor okadaic acid and blocked by the specific protein kinase C inhibitor GÖ6983. These findings are consistent with previous observations that phosphorylation of vimentin affects its intracellular localization and that vimentin is a substrate for protein kinase C (PKC). We also show that the anti-inflammatory cytokine interleukin-10 (IL-10), which inhibits PKC activity, blocks secretion of vimentin. In contrast, the pro-inflammatory cytokine tumour necrosis factor α (TNF-α) can trigger secretion of vimentin. Finally, we found that extracellular vimentin is involved in bacterial killing and the generation of oxidative metabolites, two important functions of activated macrophages. These data establish that vimentin is secreted by macrophages in response to pro-inflammatory signalling pathways and is probably involved in immune function.


Journal of Virology | 2008

Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer

Rafael Contreras-Galindo; Mark H. Kaplan; Philippe Leissner; Thibault Verjat; Ilaria Ferlenghi; Fabio Bagnoli; Fabiola Giusti; Michael H. Dosik; Daniel F. Hayes; Scott D. Gitlin; David M. Markovitz

ABSTRACT Actively replicating endogenous retroviruses entered the human genome millions of years ago and became a stable part of the inherited genetic material. They subsequently acquired multiple mutations, leading to the assumption that these viruses no longer replicate. However, certain human tumor cell lines have been shown to release endogenous retroviral particles. Here we show that RNA from human endogenous retrovirus K (HERV-K) (HML-2), a relatively recent entrant into the human genome, can be found in very high titers in the plasma of patients with lymphomas and breast cancer as measured by either reverse transcriptase PCR or nucleic acid sequence-based amplification. Further, these titers drop dramatically with cancer treatment. We also demonstrate the presence of reverse transcriptase and viral RNA in plasma fractions that contain both immature and correctly processed HERV-K (HML-2) Gag and envelope proteins. Finally, using immunoelectron microscopy, we show the presence of HERV-K (HML-2) virus-like particles in the plasma of lymphoma patients. Taken together, these findings demonstrate that elements of the endogenous retrovirus HERV-K (HML-2) can be found in the blood of modern-day humans with certain cancers.


Journal of Biological Chemistry | 2010

A Lectin Isolated from Bananas Is a Potent Inhibitor of HIV Replication

Michael D. Swanson; Harry C. Winter; Irwin J. Goldstein; David M. Markovitz

BanLec is a jacalin-related lectin isolated from the fruit of bananas, Musa acuminata. This lectin binds to high mannose carbohydrate structures, including those found on viruses containing glycosylated envelope proteins such as human immunodeficiency virus type-1 (HIV-1). Therefore, we hypothesized that BanLec might inhibit HIV-1 through binding of the glycosylated HIV-1 envelope protein, gp120. We determined that BanLec inhibits primary and laboratory-adapted HIV-1 isolates of different tropisms and subtypes. BanLec possesses potent anti-HIV activity, with IC50 values in the low nanomolar to picomolar range. The mechanism for BanLec-mediated antiviral activity was investigated by determining if this lectin can directly bind the HIV-1 envelope protein and block entry of the virus into the cell. An enzyme-linked immunosorbent assay confirmed direct binding of BanLec to gp120 and indicated that BanLec can recognize the high mannose structures that are recognized by the monoclonal antibody 2G12. Furthermore, BanLec is able to block HIV-1 cellular entry as indicated by temperature-sensitive viral entry studies and by the decreased levels of the strong-stop product of early reverse transcription seen in the presence of BanLec. Thus, our data indicate that BanLec inhibits HIV-1 infection by binding to the glycosylated viral envelope and blocking cellular entry. The relative anti-HIV activity of BanLec compared favorably to other anti-HIV lectins, such as snowdrop lectin and Griffithsin, and to T-20 and maraviroc, two anti-HIV drugs currently in clinical use. Based on these results, BanLec is a potential component for an anti-viral microbicide that could be used to prevent the sexual transmission of HIV-1.


Nature Chemical Biology | 2011

Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble

Andrew C. Stelzer; Aaron T. Frank; Jeremy D. Kratz; Michael D. Swanson; Marta J. Gonzalez-Hernandez; Janghyun Lee; Ioan Andricioaei; David M. Markovitz; Hashim M. Al-Hashimi

Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro (K(i) values of 710 nM-169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC(50) ∼23.1 μM).


Journal of Virology | 2001

Interleukin-8 Stimulates Human Immunodeficiency Virus Type 1 Replication and Is a Potential New Target for Antiretroviral Therapy

Brian R. Lane; Karin Loré; Paul J. Bock; Jan Andersson; Michael J. Coffey; Robert M. Strieter; David M. Markovitz

ABSTRACT Production of the C-X-C chemokines interleukin-8 (IL-8) and growth-regulated oncogene alpha (GRO-α) in macrophages is stimulated by exposure to human immunodeficiency virus type 1 (HIV-1). We have demonstrated previously that GRO-α then stimulates HIV-1 replication in both T lymphocytes and macrophages. Here we demonstrate that IL-8 also stimulates HIV-1 replication in macrophages and T lymphocytes. We further show that increased levels of IL-8 are present in the lymphoid tissue of patients with AIDS. In addition, we demonstrate that compounds which inhibit the actions of IL-8 and GRO-α via their receptors, CXCR1 and CXCR2, also inhibit HIV-1 replication in both T lymphocytes and macrophages, indicating potential therapeutic uses for these compounds in HIV-1 infection and AIDS.


Cancer Research | 2009

Melanoma proliferation and chemoresistance controlled by the DEK oncogene

Michael S. Khodadoust; Monique Verhaegen; Ferdinand Kappes; Erica Riveiro-Falkenbach; Juan C. Cigudosa; David S.L. Kim; Arul M. Chinnaiyan; David M. Markovitz; Maria S. Soengas

Gain of chromosome 6p is a consistent feature of advanced melanomas. However, the identity of putative oncogene(s) associated with this amplification has remained elusive. The chromatin remodeling factor DEK is an attractive candidate as it maps to 6p (within common melanoma-amplified loci). Moreover, DEK expression is increased in metastatic melanomas, although the functional relevance of this induction remains unclear. Importantly, in other tumor types, DEK can display various tumorigenic effects in part through its ability to promote proliferation and inhibit p53-dependent apoptosis. Here, we report a generalized up-regulation of DEK protein in aggressive melanoma cells and tumors. In addition, we provide genetic and mechanistic evidence to support a key role of DEK in the maintenance of malignant phenotypes of melanoma cells. Specifically, we show that long-term DEK down-regulation by independent short hairpin RNAs resulted in premature senescence of a variety of melanoma cell lines. Short-term abrogation of DEK expression was also functionally relevant, as it attenuated the traditional resistance of melanomas to DNA-damaging agents. Unexpectedly, DEK short hairpin RNA had no effect on p53 levels or p53-dependent apoptosis. Instead, we identified a new role for DEK in the transcriptional activation of the antiapoptotic MCL-1. Other MCL-1-related factors such as BCL-2 or BCL-xL were unaffected by changes in the endogenous levels of DEK, indicating a selective effect of this gene on the apoptotic machinery of melanoma cells. These results provide support for DEK as a long sought-after oncogene mapping at chromosome 6, with novel functions in melanoma proliferation and chemoresistance.


Virology | 2003

The C-X-C chemokine IP-10 stimulates HIV-1 replication

Brian R. Lane; Steven R. King; Paul J. Bock; Robert M. Strieter; Michael J. Coffey; David M. Markovitz

Chemokines play critical roles in HIV-1 infection, serving both to modulate viral replication and to recruit target cells to sites of infection. Interferon-gamma-inducible protein 10 (IP-10/CXCL10) is a C-X-C chemokine that acts specifically upon activated T cells and macrophages and attracts T cells into the cerebrospinal fluid (CSF) in HIV-associated neurological disease. We now demonstrate that IP-10 stimulates HIV-1 replication in monocyte-derived macrophages and peripheral blood lymphocytes. We further demonstrate that neutralization of endogenous IP-10 or blocking the function of its receptor, CXCR3, reduces HIV-1 replication in these same cells. Therefore, blocking the interaction between IP-10 and CXCR3 represents a possible new target for anti-retroviral therapy.


Molecular and Cellular Biology | 2008

DEK Is a Poly(ADP-Ribose) Acceptor in Apoptosis and Mediates Resistance to Genotoxic Stress

Ferdinand Kappes; Jörg Fahrer; Michael S. Khodadoust; Anja Tabbert; C. Strasser; Nirit Mor-Vaknin; M. Moreno-Villanueva; Alexander Bürkle; David M. Markovitz; Elisa Ferrando-May

ABSTRACT DEK is a nuclear phosphoprotein implicated in oncogenesis and autoimmunity and a major component of metazoan chromatin. The intracellular cues that control the binding of DEK to DNA and its pleiotropic functions in DNA- and RNA-dependent processes have remained mainly elusive so far. Our recent finding that the phosphorylation status of DEK is altered during death receptor-mediated apoptosis suggested a potential involvement of DEK in stress signaling. In this study, we show that in cells committed to die, a portion of the cellular DEK pool is extensively posttranslationally modified by phosphorylation and poly(ADP-ribosyl)ation. Through interference with DEK expression, we further show that DEK promotes the repair of DNA lesions and protects cells from genotoxic agents that typically trigger poly(ADP-ribose) polymerase activation. The posttranslational modification of DEK during apoptosis is accompanied by the removal of the protein from chromatin and its release into the extracellular space. Released modified DEK is recognized by autoantibodies present in the synovial fluids of patients affected by juvenile rheumatoid arthritis/juvenile idiopathic arthritis. These findings point to a crucial role of poly(ADP-ribosyl)ation in shaping DEKs autoantigenic properties and in its function as a promoter of cell survival.


Molecular and Cellular Biology | 2004

The Endothelial Cell-Specific Antibody PAL-E Identifies a Secreted Form of Vimentin in the Blood Vasculature

Bin Xu; Robert M. deWaal; Nirit Mor-Vaknin; Chris Hibbard; David M. Markovitz; Mark L. Kahn

ABSTRACT During mammalian vascular development, endothelial cells form a complex array of vessels that differ markedly in structure and function, but the molecular basis for this vascular complexity is poorly understood. Recent insights into endothelial diversity have come from the identification of molecular markers expressed on distinct endothelial cell populations. One such marker, the PAL-E antibody, has been used for almost 20 years to distinguish blood and lymphatic vessels, but the identity of the protein recognized by PAL-E has been unknown. In the present study we have used protein purification and tandem mass spectrometry analysis of tryptic peptides to identify the PAL-E antigen as a secreted form of vimentin. Vimentin has been well characterized as an intracellular intermediate filament protein expressed broadly in mesenchymal cells. In contrast, PAL-E-reactive vimentin is secreted extracellularly, its synthesis is restricted to a distinct population of blood endothelial cells and activated macrophages, and PAL-E-reactive vimentin is found in circulating human blood. PAL-E-reactive vimentin does not arise from an endothelial cell-specific mRNA transcript but is the product of cell-specific posttranslational modification. The PAL-E antibody therefore defines secretion of vimentin as a molecular distinction among endothelial cells and exposes a novel, extracellular role for vimentin in the blood vasculature.


Journal of Virology | 2012

Characterization of Human Endogenous Retroviral Elements in the Blood of HIV-1-Infected Individuals

Rafael Contreras-Galindo; Mark Kaplan; Angie C. Contreras-Galindo; Marta J. Gonzalez-Hernandez; Ilaria Ferlenghi; Fabiola Giusti; Eric Lorenzo; Scott D. Gitlin; Michael H. Dosik; Yasuhiro Yamamura; David M. Markovitz

ABSTRACT We previously reported finding the RNA of a type K human endogenous retrovirus, HERV-K (HML-2), at high titers in the plasma of HIV-1-infected and cancer patients (R. Contreras-Galindo et al., J. Virol. 82:9329–9236, 2008.). The extent to which the HERV-K (HML-2) proviruses become activated and the nature of their activated viral RNAs remain important questions. Therefore, we amplified and sequenced the full-length RNA of the env gene of the type 1 and 2 HERV-K (HML-2) viruses collected from the plasma of seven HIV-1-infected patients over a period of 1 to 3 years and from five breast cancer patients in order to reconstruct the genetic evolution of these viruses. HERV-K (HML-2) RNA was found in plasma fractions of HIV-1 patients at a density of ∼1.16 g/ml that contained both immature and correctly processed HERV-K (HML-2) proteins and virus-like particles that were recognized by anti-HERV-K (HML-2) antibodies. RNA sequences from novel HERV-K (HML-2) proviruses were discovered, including K111, which is specifically active during HIV-1 infection. Viral RNA arose from complete proviruses and proviruses devoid of a 5′ long terminal repeat, suggesting that the expression of HERV-K (HML-2) RNA in these patients may involve sense and antisense transcription. In HIV-1-infected individuals, the HERV-K (HML-2) viral RNA showed evidence of frequent recombination, accumulation of synonymous rather than nonsynonymous mutations, and conserved N-glycosylation sites, suggesting that some of the HERV-K (HML-2) viral RNAs have undergone reverse transcription and are under purifying selection. In contrast, HERV-K (HML-2) RNA sequences found in the blood of breast cancer patients showed no evidence of recombination and exhibited only sporadic viral mutations. This study suggests that HERV-K (HML-2) is active in HIV-1-infected patients, and the resulting RNA message reveals previously undiscovered HERV-K (HML-2) genomic sequences.

Collaboration


Dive into the David M. Markovitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Kaplan

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge