David M. Pearson
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David M. Pearson.
Geological Society of America Bulletin | 2009
George E. Gehrels; Margaret E. Rusmore; Glenn J. Woodsworth; Maria Luisa Crawford; Christopher L. Andronicos; L. S. Hollister; J. Patchett; Mihai N. Ducea; Robert F. Butler; Keith A. Klepeis; Cameron Davidson; Richard M. Friedman; James W. Haggart; B. Mahoney; William A. Crawford; David M. Pearson; J. D. Girardi
Previously published and new U-Pb geochronologic analyses provide 313 zircon and 59 titanite ages that constrain the igneous and cooling history of the Coast Mountains batholith in north-coastal British Columbia. First-order findings are as follows: (1) This segment of the batholith consists of three portions: a western magmatic belt (emplaced into the outboard Alexander and Wrangellia terranes) that was active 177–162 Ma, 157–142 Ma, and 118–100 Ma; an eastern belt (emplaced into the inboard Stikine and Yukon-Tanana terranes) that was active ca. 180–110 Ma; and a 100–50 Ma belt that was emplaced across much of the orogen during and following mid-Cretaceous juxtaposition of outboard and inboard terranes. (2) Magmatism migrated eastward from 120 to 80 (or 60) Ma at a rate of 2.0–2.7 km/Ma, a rate similar to that recorded by the Sierra Nevada batholith. (3) Magmatic flux was quite variable through time, with high (>35–50 km 3 /Ma per km strike length) flux at 160–140 Ma, 120–78 Ma, and 55–48 Ma, and magmatic lulls at 140–120 Ma and 78–55 Ma. (4) High U/Th values record widespread growth (and/or recrystallization) of metamorphic zircon at 88–76 Ma and 62–52 Ma. (5) U-Pb ages of titanite record rapid cooling of axial portions of the batholith at ca. 55–48 Ma in response to east-side-down motion on regional extensional structures. (6) The magmatic history of this portion of the Coast Mountains batholith is consistent with a tectonic model involving formation of a Late Jurassic–earliest Cretaceous magmatic arc along the northern Cordilleran margin; duplication of this arc system in Early Cretaceous time by >800 km (perhaps 1000–1200 km) of sinistral motion (bringing the northern portion outboard of the southern portion); high-flux magmatism prior to and during orthogonal mid-Cretaceous terrane accretion; low-flux magmatism during Late Cretaceous–Paleocene dextral transpressional motion; and high-flux Eocene magmatism during rapid exhumation in a regime of regional crustal extension.
Geosphere | 2013
David M. Pearson; Paul Kapp; Peter G. DeCelles; Peter W. Reiners; George E. Gehrels; Mihai N. Ducea; Alex Pullen
The retroarc fold-and-thrust belt of the Central Andes exhibits major along-strike variations in its pre-Cenozoic tectonic configuration. These variations have been proposed to explain the considerable southward decrease in the observed magnitude of Cenozoic shortening. Regional mapping, a cross section, and U-Pb and (U-Th)/He age dating of apatite and zircon presented here build upon the preexisting geological framework for the region. At the latitude of the regional transect (24–25°S), results demonstrate that the thrust belt propagated in an overall eastward direction in three distinct pulses during Cenozoic time. Each eastward jump in the deformation front was apparently followed by local westward deformation migration, likely reflecting a subcritically tapered orogenic wedge. The first eastward jump was at ca. 40 Ma, when deformation and exhumation were restricted to the western margin of the Eastern Cordillera and eastern margin of the Puna Plateau. At 12–10 Ma, the thrust front jumped ∼75 km toward the east to bypass the central portion of a horst block of the Cretaceous Salta rift system, followed by initiation of new faults in a subsystem that propagated toward the west into this preexisting structural high. During Pliocene time, deformation again migrated >100 km eastward to a Cretaceous synrift depocenter in the Santa Barbara Ranges. The sporadic foreland-ward propagation documented here may be common in basement-involved thrust systems where inherited weaknesses due to previous crustal deformation are preferentially reactivated during later shortening. The minimum estimate for the magnitude of shortening at this latitude is ∼142 km, which is moderate in magnitude compared to the 250–350 km of shortening accommodated in the retroarc thrust belt of southern Bolivia to the north. This work supports previous hypotheses that the magnitude of shortening decreases significantly along strike away from a maximum in southern Bolivia, largely as a result of the distribution of pre-Cenozoic basins that are able to accommodate a large magnitude of thin-skinned shortening. A major implication is that variations in the pre-orogenic upper-crustal architecture can influence the behavior of the continental lithosphere during later orogenesis, a result that challenges geodynamic models that neglect upper-plate heterogeneities.
Tectonics | 2017
David M. Pearson; Douglas R. MacLeod; Mihai N. Ducea; George E. Gehrels; P. Jonathan Patchett
NSF [EAR-0309885, EAR-1338583]; Idaho State University; Romanian National Science funding agency UEFISCDI grant [PN-III-P4-ID-PCE-2016-0127]
Lithosphere | 2017
Paul Karl Link; Mary Katherine Todt; David M. Pearson; Robert C. Thomas
Upper Cambrian feldspathic sandstones deposited across southeast Idaho, Montana, and Wyoming (USA) during the Sauk II-Sauk III regression boundary contain distinctive 500–490 Ma detrital zircon grains, derived from Late Cambrian plutons in the Lemhi arch of east-central Idaho. The Worm Creek Quartzite Member of the St. Charles Formation in the Paris plate of the southeast Idaho thrust belt contains as much as 320 m of feldspathic fine-grained sandstone within a thick section of carbonate rocks. The near-unimodal age of hundreds of detrital zircons from 8 samples of the Worm Creek is 497 Ma. This age and the initial εHf values from these detrital zircons (εHf of −8.0 ± 1.9 to 5.4 ± 1.2) overlap the age and isotopic composition of the Deep Creek and Beaverhead plutons intruded into the Lemhi arch (εHf of −6.3 ± 1.1 to 2.7 ± 1.4). This suggests rapid unroofing of the hypabyssal alkalic plutons, which were the primary source for the sandstones. In the plutons, intermediate initial εHf values are neither juvenile nor evolved, suggesting mixing with a Mesoproterozoic component. A 493–488 Ma detrital zircon age peak is also found in Upper Cambrian sandstones (from the Sauk II-III boundary) in the Wind River Canyon on the Wyoming craton, the Melrose area of the southwest Montana thrust belt, and the Leaton Gulch area of the central Idaho thrust belt. The detrital zircon signatures of these Upper Cambrian rocks is markedly different from that of the Lower Cambrian upper Brigham Group in southeast Idaho and the Middle Cambrian Flathead Sandstone at Teton Pass, Wyoming (1790 Ma age peak). The overlying Middle Ordovician Swan Peak and Kinnikinic Quartzites from Idaho south to Nevada contain a different detrital zircon age population, with almost all grains older than 1800 Ma and a peak at 1860 Ma. We suggest that the Lemhi arch is a relatively unextended crustal block coincident with the northwest-trending Mesoproterozoic Lemhi subbasin of the Belt Supergroup and with ca. 1.37 Ga mafic magmatism. This magmatism strengthened the lower crust and predisposed the Lemhi arch to remain intact during extension and Neoproterozoic rifting of western Laurentia. Oblique normal faulting and subsidence along the dextral normal Snake River transfer fault produced the Late Cambrian Worm Creek basin and juxtaposed active Cambrian magmatism and exhumation with passive-margin sedimentation to the south. LITHOSPHERE GSA Data Repository Item 2017339 https://doi.org/10.1130/L671.1
Journal of Petrology | 2012
J. D. Girardi; P. Jonathan Patchett; Mihai N. Ducea; George E. Gehrels; M. Robinson Cecil; Margaret E. Rusmore; Glenn J. Woodsworth; David M. Pearson; Christian Manthei; Paul H. Wetmore
Tectonics | 2012
David M. Pearson; Paul Kapp; Peter W. Reiners; George E. Gehrels; Mihai N. Ducea; Alex Pullen; Juan E. Otamendi; Ricardo N. Alonso
Journal of South American Earth Sciences | 2012
Juan E. Otamendi; Mihai N. Ducea; David M. Pearson; A.M. Tibaldi; I. Baliani
Geological Society of America Memoirs | 2015
Peter W. Reiners; Stuart N. Thomson; Antoine J. Vernon; S.D. Willett; Massimiliano Zattin; J. Einhorn; George E. Gehrels; Jay Quade; David M. Pearson; Kendra E. Murray; William Cavazza
Archive | 2008
J. D. Girardi; P. Jonathan Patchett; Mihai N. Ducea; George E. Gehrels; C. D. Manthei; David M. Pearson; Margaret E. Rusmore; Glenn J. Woodsworth; Jiang Ping Fan; Robert Kerrich; J. T. Thole; Karl R. Wirth
Tectonics | 2012
David M. Pearson; Paul Kapp; Peter W. Reiners; George E. Gehrels; Mihai N. Ducea; Alex Pullen; Juan E. Otamendi; Ricardo N. Alonso