Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M Shaw is active.

Publication


Featured researches published by David M Shaw.


Journal of Immunotherapy | 2005

The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens.

Ryan D. Guest; Robert E. Hawkins; Natalia Kirillova; Eleanor J. Cheadle; Jennifer Arnold; Allison F. O'Neill; Joely J Irlam; Kerry A. Chester; John T. Kemshead; David M Shaw; M. J. Embleton; Peter L. Stern; David E. Gilham

Human peripheral blood lymphocytes can be transduced to express antigen-dependent CD3ζ chimeric immune receptors (CIRs), which function independently of the T-cell receptor (TCR). Although the exact function of these domains is unclear, previous studies imply that an extracellular spacer region is required for optimal CIR activity. In this study, four scFvs (in the context of CIRs with or without extracellular spacer regions) were used to target the human tumor-associated antigens carcinoembryonic antigen (CEA), neural cell adhesion molecule (NCAM), the oncofetal antigen 5T4, and the B-cell antigen CD19. In all cases human T-cell populations expressing the CIRs were functionally active against their respective targets, but the anti-5T4 and anti-NCAM CIRs showed enhanced specific cytokine release and cytotoxicity only when possessing an extracellular spacer region. In contrast, the anti-CEA and anti-CD19 CIRs displayed optimal cytokine release activity only in the absence of an extracellular spacer. Interestingly, mapping of the scFv epitopes has revealed that the anti-CEA scFv binds close to the amino-terminal of CEA, which is easily accessible to the CIR. In contrast, CIRs enhanced by a spacer domain appear to bind to epitopes residing closer to the cell membrane, suggesting that a more flexible extracellular domain may be required to permit the efficient binding of such epitopes. These results show that a spacer is not necessary for optimal activity of CIRs but that the optimal design varies.


British Journal of Cancer | 2001

Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen

Göran Forsberg; L Ohlsson; T Brodin; P Björk; P A Lando; David M Shaw; Peter L. Stern; M Dohlsten

Superantigens activate T-cells by linking the T-cell receptor to MHC class II on antigen-presenting cells, and novel reactivity can be introduced by fusing the superantigen to a targeting molecule. Thus, an antibody-targeted superantigen, which activates T cells to destroy tumour cells, might be used as cancer therapy. A suitable target is the 5T4 oncofetal antigen, which is expressed on many carcinomas. We constructed a fusion protein from a Fab of a monoclonal antibody recognizing the 5T4 antigen, and an engineered superantigen. The recombinant product 5T4FabV13-SEAD227A bound the 5T4 antigen expressed on the human non-small-cell lung cancer cell line Calu-1 with a Kd of 1.2 nM while the substitution of Asp227 to Ala in the superantigen moiety reduced binding activity to MHC class II. 5T4FabV13-SEAD227A tumour reactivity was demonstrated in 7/7 NSCLC samples by immunohistochemistry, while normal tissue reactivity was low to moderate. 5T4FabV13-SEAD227A induced significant T-cell-dependent in vitro killing of sensitive 5T4 bearing Calu-1 cells, with maximum lysis at 10–10 M, while the capacity to lyse MHC class II expressing cells was approximately 1000 times less effective. Immunotherapy of 5T4FabV13-SEAD227A against human NSCLC was investigated in SCID mice reconstituted with human peripheral blood mononuclear cells. Mice carrying intreperitoneally growing Calu-1 cells showed significant reduction in tumour mass and number after intravenous therapy with 5T4FabV13-SEAD227A. Thus, 5T4FabV13-SEAD227A has highly attractive properties for therapy of human NSCLC.


British Journal of Cancer | 2007

A phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma.

David M Shaw; Noel B Connolly; Poulam M. Patel; S Kilany; Gunnar Hedlund; Orjan Nordle; Göran Forsberg; Jamal Zweit; Peter L. Stern; Robert E. Hawkins

In a phase II study, 43 renal cell carcinoma patients were treated with individualised doses of ABR-214936; a fusion of a Fab recognising the antigen 5T4, and Staphylococcal enterotoxin A. Drug was given intravenously on 4 consecutive days, treatment was repeated 1 month later. Treatment was associated with moderate fever and nausea, but well tolerated. Of 40 evaluable patients, 28 had disease control at 2 months, and at 4 months, one patient showed partial response (PR) and 16 patients stable disease. Median survival, with minimum follow-up of 26 months was 19.7 months with 13 patients alive to date. Stratification by the Motzers prognostic criteria highlights prolonged survival compared to published expectation. Patients receiving higher drug exposure had greater disease control and lived almost twice as long as expected, whereas the low-exposure patients survived as expected. Sustained interleukin-2 (IL-2) production after a repeated injection appears to be a biomarker for clinical effect, as the induced-IL-2 level on the day 2 of treatment correlated with survival. The high degree of disease control and the prolonged survival suggest that this treatment can be effective. These findings will be used in the trial design for the next generation of drug, with reduced antigenicity and toxicity.


PLOS ONE | 2010

CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells

Thomas D. Southgate; Owen J. McGinn; Fernanda Castro; Andrzej J. Rutkowski; Mariam Al-Muftah; Georgi Marinov; Graeme J. Smethurst; David M Shaw; Christopher M. Ward; Crispin J. Miller; Peter L. Stern

5T4 oncofetal molecules are highly expressed during development and upregulated in cancer while showing only low levels in some adult tissues. Upregulation of 5T4 expression is a marker of loss of pluripotency in the early differentiation of embryonic stem (ES) cells and forms an integrated component of an epithelial-mesenchymal transition, a process important during embryonic development and metastatic spread of epithelial tumors. Investigation of the transcriptional changes in early ES differentiation showed upregulation of CXCL12 and down-regulation of a cell surface protease, CD26, which cleaves this chemokine. CXCL12 binds to the widely expressed CXCR4 and regulates key aspects of development, stem cell motility and tumour metastasis to tissues with high levels of CXCL12. We show that the 5T4 glycoprotein is required for optimal functional cell surface expression of the chemokine receptor CXCR4 and CXCL12 mediated chemotaxis in differentiating murine embryonic stem cells and embryo fibroblasts (MEF). Cell surface expression of 5T4 and CXCR4 molecules is co-localized in differentiating ES cells and MEF. By contrast, differentiating ES and MEF derived from 5T4 knockout (KO) mice show only intracellular CXCR4 expression but infection with adenovirus encoding mouse 5T4 restores CXCL12 chemotaxis and surface co-localization with 5T4 molecules. A series of chimeric constructs with interchanged domains of 5T4 and the glycoprotein CD44 were used to map the 5T4 sequences relevant for CXCR4 membrane expression and function in 5T4KO MEF. These data identified the 5T4 transmembrane domain as sufficient and necessary to enable CXCR4 cell surface expression and chemotaxis. Furthermore, some monoclonal antibodies against m5T4 can inhibit CXCL12 chemotaxis of differentiating ES cells and MEF which is not mediated by simple antigenic modulation. Collectively, these data support a molecular interaction of 5T4 and CXCR4 occurring at the cell surface which directly facilitates the biological response to CXCL12. The regulation of CXCR4 surface expression by 5T4 molecules is a novel means to control responses to the chemokine CXCL12 for example during embryogenesis but can also be selected to advantage the spread of a 5T4 positive tumor from its primary site.


Biochimica et Biophysica Acta | 2000

Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4.

David M Shaw; M.J. Embleton; C. Westwater; Matthew G. Ryan; Kevin Alan Myers; Susan Mary Kingsman; Miles William Carroll; Peter L. Stern

The oncofoetal antigen 5T4 is a 72 kDa glycoprotein expressed at the cell surface. It is defined by a monoclonal antibody, mAb5T4, that recognises a conformational extracellular epitope in the molecule. Overexpression of 5T4 antigen by tumours of several types has been linked with disease progression and poor clinical outcome. Its restricted expression in non-malignant tissue makes 5T4 antigen a suitable target for the development of antibody directed therapies. The use of murine monoclonal antibodies for targeted therapy allows the tumour specific delivery of therapeutic agents. However, their use has several drawbacks, including a strong human anti-mouse immune (HAMA) response and limited tumour penetration due to the size of the molecules. The use of antibody fragments leads to improved targeting, pharmacokinetics and a reduced HAMA. A single chain antibody (scFv) comprising the variable regions of the mAb5T4 heavy and light chains has been expressed in Escherichia coli. The addition of a eukaryotic leader sequence allowed production in mammalian cells. The two 5T4 single chain antibodies, scFv5T4WT19 and LscFv5T4, described the same pattern of 5T4 antigen expression as mAb5T4 in normal human placenta and by FACS. Construction of a 5T4 extracellular domain-IgGFc fusion protein and its expression in COS-7 cells allowed the relative affinities of the antibodies to be compared by ELISA and measured in real time using a biosensor based assay. MAb5T4 has a high affinity, K(D)=1.8x10(-11) M, as did both single chain antibodies, scFv5T4WT19 K(D)=2.3x10(-9) M and LscFv5T4 K(D)=7.9x10(-10) M. The small size of this 5T4 specific scFv should allow construction of fusion proteins with a range of biological response modifiers to be prepared whilst retaining the improved pharmacokinetic properties of scFvs.


Biochemical Journal | 2002

Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen

David M Shaw; Andrew M Woods; Kevin Alan Myers; Caroline Westwater; Veena Rahi-Saund; Michael J. Davies; David V. Renouf; Elizabeth F. Hounsell; Peter L. Stern

The human 5T4 oncofoetal antigen is a focus for development of several antibody-directed therapies on the basis of the murine monoclonal antibody against 5T4 (mAb5T4), which recognizes a conformational epitope. 5T4 molecules are highly N-glycosylated transmembrane glycoproteins whose extracellular domain contains two regions of leucine-rich repeats (LRRs) and associated flanking regions, separated by an intervening hydrophilic sequence. Using a series of deletion and mutated cDNA constructs as well as chimaeras with the murine homologue, we have mapped the mAb5T4 epitope to the more membrane-proximal LRR2 or its flanking region. Analysis of the glycosylation of the seven consensus Asp-Xaa-Ser/Thr sites was consistent with all of the sites being glycosylated. A combination of two high-mannose chains (predominantly octasaccharide) and five mostly sialylated bi-, tri- and tetra-antennary complex chains with minor quantities of core fucose were detected. The two glycosylation sites, which are the most likely to have predominantly high-mannose chains, are in the only two regions that show significant differences between the human and the 81% identical mouse sequence. A site-directed mutation, which abolished glycosylation at one of these sites (position 192), did not alter antigenicity. The other, which is nearest to the N-terminus in the human, has an Asn-Leu-Thr to Asn-Leu-Leu conversion in the mouse, so cannot be glycosylated in the latter species. The large complex glycosylation at the other sites is likely to influence the antigenicity and tertiary structure generating the 5T4 epitope.


Biochemical Journal | 2002

Characterization of the murine 5T4 oncofoetal antigen: a target for immunotherapy in cancer.

Andrew M Woods; Who W Wang; David M Shaw; Christopher M. Ward; Miles William Carroll; Buddug R Rees; Peter L. Stern

Human 5T4 oncofoetal antigen defined by the murine 5T4 monoclonal antibody is a highly glycosylated protein expressed by trophoblast and a few specialized adult epithelia. Up-regulation of 5T4 expression in some cancers is associated with poor clinical outcome; overexpression of human 5T4 cDNA in epithelial cells can alter their morphology and motility, supporting a role for such functions in cancer and development. A murine model to study 5T4 biology and tumour immunology would be useful. The production of m5T4-specific antibodies, their use in establishing transfected cells and documenting their biological properties in vitro are described. A rat monoclonal antibody specific for mouse 5T4 molecules by ELISA, flow cytometry, immunohistochemistry and immunoprecipitation was isolated and epitope mapped. Similar to its human counterpart, murine 5T4 antigen is a 72 kDa glycoprotein (immunoprecipitation and Western blot analysis) and exhibits punctate cell surface expression, dependent upon the integrity of the actin cytoskeleton. Likewise, overexpression of autologous murine 5T4 by B16 F10 melanoma cells and A9 L fibroblasts accentuates the 5T4 phenotype, which is characterized by a spindle-like morphology, increased motility, and reduced adhesion and proliferation rate. Immunohistochemical analysis of adult mouse tissues shows a restricted pattern of expression similar to that of human 5T4 antigen. The murine 5T4 antigen-expressing cell lines and antibody reagents are now being used to explore novel immunotherapies in pre-clinical models and the biology of 5T4 in development.


Cancer Gene Therapy | 2002

Targeting immune effector molecules to human tumor cells through genetic delivery of 5T4-specific scFv fusion proteins

Kevin Alan Myers; Matthew G. Ryan; Peter L. Stern; David M Shaw; M Jim Embleton; Susan M. Kingsman; Miles William Carroll

Although several clinical trials have shown beneficial effects by targeting tumor-associated antigens (TAAs) with monoclonal antibodies, a number of issues, including poor penetration of the tumor mass and human antimouse antibody responses, remain. The use of recombinant single-chain Fv (scFv) fragments has the potential to address these and other issues while allowing the addition of different effector functions. To develop therapeutic strategies that recruit both humoral and cellular arms of the immune response, we have constructed chimeric proteins linking either the human IgG1 Fc domain or the extracellular domain of murine B7.1 to a scFv specific for the oncofetal glycoprotein, 5T4. This TAA is expressed by a wide variety of carcinomas and is associated with metastasis and poorer clinical outcome. We have engineered retroviral constructs that produce fusion proteins able to interact simultaneously with both 5T4-positive cells and with the receptor/ligands of the immune effector moieties. Genetic delivery through a murine leukemia virus vector to 5T4-positive tumor cells results in the secreted scFv fusion protein binding to the cell surface. Furthermore, the scFv–HIgG1 fusion protein is able to direct lysis of 5T4-expressing human tumor cell lines through antibody-dependent cell cytotoxicity, indicating its potential as a gene therapy for human cancers.


Biochimica et Biophysica Acta | 2004

Vaccine and antibody-directed T cell tumour immunotherapy

Said Dermime; David E. Gilham; David M Shaw; Emma J Davidson; El Kahina Meziane; Anne C Armstrong; Robert E. Hawkins; Peter L. Stern


Molecular Cancer Therapeutics | 2002

Attenuated Recombinant Vaccinia Virus Expressing Oncofetal Antigen (Tumor-associated Antigen) 5T4 Induces Active Therapy of Established Tumors

Kate Mulryan; Matthew G. Ryan; Kevin Alan Myers; David M Shaw; Who W Wang; Susan Mary Kingsman; Peter L. Stern; Miles William Carroll

Collaboration


Dive into the David M Shaw's collaboration.

Top Co-Authors

Avatar

Peter L. Stern

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David V. Renouf

University College London

View shared research outputs
Top Co-Authors

Avatar

Jamal Zweit

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge