Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David M. Winker is active.

Publication


Featured researches published by David M. Winker.


Journal of Atmospheric and Oceanic Technology | 2009

Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms

David M. Winker; Mark A. Vaughan; Ali H. Omar; Yongxiang Hu; Kathleen A. Powell; Zhaoyan Liu; William H. Hunt; Stuart A. Young

Abstract The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere. CALIOP is the primary instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has flown in formation with the NASA A-train constellation of satellites since May 2006. The global, multiyear dataset obtained from CALIOP provides a new view of the earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in the climate system. A suite of algorithms has been developed to identify aerosol and cloud layers and to retrieve a variety of optical and microphysical properties. CALIOP represents a significant advance over previous space lidars, and the algorithms that have been developed have many innovative aspects to take advantage of its capabilities. This paper provides a brief overview of the CALIPSO mission, the CA...


Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space | 2003

The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds

David M. Winker; Jacques Pelon; M. Patrick McCormick

Current uncertainties in the effects of aerosols and clouds on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. The CALIPSO satellite will use an active lidar together with passive instruments to provide vertical profiles of aerosols and clouds and their properties which will help address these uncertainties. CALIPSO will fly in formation with the EOS Aqua and CloudSat satellites and the other satellites of the Aqua constellation. The acquisition of simultaneous and coincident observations will allow numerous synergies to be realized by combining CALIPSO observations with complementary observations from other platforms. In particu-lar, cloud observations from the CALIPSO lidar and the CloudSat radar will be complementary, together encompassing the variety of clouds found in the atmosphere, from thin cirrus to deep convective clouds. CALIPSO is being developed within the framework of a collaboration between NASA and CNES and is scheduled for launch in 2004.


Journal of Atmospheric and Oceanic Technology | 2009

The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm

Ali H. Omar; David M. Winker; Mark A. Vaughan; Yongxiang Hu; Charles R. Trepte; Richard A. Ferrare; Kam-Pui Lee; Chris A. Hostetler; Chieko Kittaka; Raymond Rogers; Ralph E. Kuehn; Zhaoyan Liu

Abstract Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO a...


Journal of Atmospheric and Oceanic Technology | 2009

Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

Mark A. Vaughan; Kathleen A. Powell; Ralph E. Kuehn; Stuart A. Young; David M. Winker; Chris A. Hostetler; William H. Hunt; Zhaoyan Liu; Matthew J. McGill; Brian Getzewich

Abstract Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth’s atmosphere is critical in assessing the planet’s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing pl...


Journal of Atmospheric and Oceanic Technology | 2009

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance

Zhaoyan Liu; Mark A. Vaughan; David M. Winker; Chieko Kittaka; Brian Getzewich; Ralph E. Kuehn; Ali H. Omar; Kathleen A. Powell; Charles R. Trepte; Chris A. Hostetler

Abstract The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols observed by the lidar aboard the CALIPSO satellite is critical for accurate retrievals of cloud and aerosol optical properties and the correct interpretation of measurements. This paper reviews the theoretical basis of the CALIPSO lidar cloud and aerosol discrimination (CAD) algorithm, and describes the enhancements made to the version 2 algorithm that is used in the current data release (release 2). The paper also presents a preliminary assessment of the CAD performance based on one full day (12 August 2006) of expert manual classification and on one full month (July 2006) of the CALIOP 5-km cloud and aerosol layer products. Overall, the CAD algorithm works well in most cases. The 1-day manual verification suggests that the success rate is in the neighborh...


Journal of Atmospheric and Oceanic Technology | 2009

CALIPSO Lidar Description and Performance Assessment

William H. Hunt; David M. Winker; Mark A. Vaughan; Kathleen A. Powell; Patricia L. Lucker; Carl Weimer

Abstract This paper provides background material for a collection of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) algorithm papers that are to be published in the Journal of Atmospheric and Oceanic Technology. It provides a brief description of the design and performance of CALIOP, a three-channel elastic backscatter lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. After more than 2 yr of on-orbit operation, CALIOP performance continues to be excellent in the key areas of laser energy, signal-to-noise ratio, polarization sensitivity, and overall long-term stability, and the instrument continues to produce high-quality data products. There are, however, some areas where performance has been less than ideal. These include short-term changes in the calibration coefficients at both wavelengths as the satellite passes between dark and sunlight, some radiation-induced effects on both the detectors and the laser when passing through the South Atlant...


Proceedings of the IEEE | 1996

An overview of LITE: NASA's Lidar In-space Technology Experiment

David M. Winker; R.H. Couch; M.P. McCormick

The Lidar In-space Technology Experiment (LITE) is a three-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. LITE flew on Discovery in September 1994 as part of the STS-64 mission. The goals of the LITE mission were to validate key lidar technologies for spaceborne applications, to explore the applications of space lidar, and to gain operational experience which will benefit the development of future systems on free-flying satellite platforms. The performance of the LITE instrument was excellent, resulting in the collection of over 40 GBytes of data. These data present us with our first highly detailed global view of the vertical structure of cloud and aerosol from the Earths surface through the middle stratosphere. This paper will discuss the LITE instrument, the LITE mission, and briefly present some results from the Experiment. These preliminary results highlight the benefits to be obtained from long duration satellite lidars.


Remote Sensing | 2004

Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products

Mark A. Vaughan; Stuart A. Young; David M. Winker; Kathleen A. Powell; Ali H. Omar; Zhaoyan Liu; Yongxiang Hu; Chris A. Hostetler

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite will be launched in April of 2005, and will make continuous measurements of the Earths atmosphere for the following three years. Retrieving the spatial and optical properties of clouds and aerosols from the CALIPSO lidar backscatter data will be confronted by a number of difficulties that are not faced in the analysis of ground-based data. Among these are the very large distance from the target, the high speed at which the satellite traverses the ground track, and the ensuing low signal-to-noise ratios that result from the mass and power restrictions imposed on space-based platforms. In this work we describe an integrated analysis scheme that employs a nested, multi-grid averaging technique designed to optimize tradeoffs between spatial resolution and signal-to-noise ratio. We present an overview of the three fundamental retrieval algorithms (boundary location, feature classification, and optical properties analysis), and illustrate their interconnections using data product examples that include feature top and base altitudes, feature type (i.e., cloud or aerosol), and layer optical depths.


Journal of the Atmospheric Sciences | 2003

Mesoscale Variations of Tropospheric Aerosols

Theodore L. Anderson; Robert J. Charlson; David M. Winker; John A. Ogren; Kim Holmén

Abstract Tropospheric aerosols are calculated to cause global-scale changes in the earths heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented synergy among satellite, airborne, and surface-based observations, as well as models. This study considers one aspect of achieving this synergy—the need to treat aerosol variability in a consistent and realistic way. This need creates a requirement to rationalize the differences in spatiotemporal resolution and coverage among the various observational and modeling approaches. It is shown, based on aerosol optical data from diverse regions, that mesoscale variability (specifically, for horizontal scales of 40–400 km and temporal scales of 2–48 h) is a common and perhaps universal feature of lower-tropospheric aerosol light extinction. Such variation is below the traditional synoptic or “airmass” scale (where the aerosol is often assumed to be essentially ho...


Journal of Atmospheric and Oceanic Technology | 2009

CALIPSO/CALIOP Cloud Phase Discrimination Algorithm

Yongxiang Hu; David M. Winker; Mark A. Vaughan; Bing Lin; Ali H. Omar; Charles R. Trepte; David Flittner; Ping Yang; Shaima L. Nasiri; Bryan A. Baum; Robert E. Holz; Wenbo Sun; Zhaoyan Liu; Zhien Wang; Stuart A. Young; Knut Stamnes; Jianping Huang; Ralph E. Kuehn

Abstract The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud ph...

Collaboration


Dive into the David M. Winker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaoyan Liu

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Yongxiang Hu

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Ali H. Omar

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart A. Young

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge