Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Malone is active.

Publication


Featured researches published by David Malone.


Malaria Journal | 2011

Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d'Ivoire.

Benjamin G Koudou; Alphonsine A Koffi; David Malone; Janet Hemingway

BackgroundPyrethroid resistance in vectors could limit the efficacy of long-lasting insecticidal nets (LLINs) because all LLINs are currently treated with pyrethroids. The goal of this study was to evaluate the efficacy and wash resistance of PermaNet® 3.0 compared to PermaNet® 2.0 in an area of high pyrethroid in Côte dIvoire. PermaNet® 3.0 is impregnated with deltamethrin at 85 mg/m2 on the sides of the net and with deltamethrin and piperonyl butoxide on the roof. PermaNet® 2.0 is impregnated with deltamethrin at 55 mg/m2 across the entire net.MethodsThe study was conducted in the station of Yaokoffikro, in central Côte dIvoire. The efficacy of intact unwashed and washed LLINs was compared over a 12-week period with a conventionally-treated net (CTN) washed to just before exhaustion. WHO cone bioassays were performed on sub-sections of the nets, using wild-resistant An. gambiae and Kisumu strains. Mosquitoes were collected five days per week and were identified to genus and species level and classified as dead or alive, then unfed or blood-fed.ResultsMortality rates of over 80% from cone bioassays with wild-caught pyrethroid-resistant An. gambiae s.s were recorded only with unwashed PermaNet® 3.0. Over 12 weeks, a total of 7,291 mosquitoes were collected. There were significantly more An. gambiae s.s. and Culex spp. caught in control huts than with other treatments (P < 0.001). The proportion of mosquitoes exiting the huts was significantly lower with the control than for the treatment arms (P < 0.001). Mortality rates with resistant An. gambiae s.s and Culex spp, were lower for the control than for other treatments (P < 0.001), which did not differ (P > 0.05) except for unwashed PermaNet® 3.0 (P < 0.001), which gave significantly higher mortality (P < 0.001).ConclusionsThis study showed that unwashed PermaNet® 3.0 caused significantly higher mortality against pyrethroid resistant An. gambiae s.s and Culex spp than PermaNet® 2.0 and the CTN. The increased efficacy with unwashed PermaNet® 3.0 over PermaNet® 2.0 and the CTN was also demonstrated by higher KD and mortality rates (KD > 95% and mortality rate > 80%) in cone bioassays performed with wild pyrethroid-resistant An. gambiae s.s from Yaokoffikro.


Malaria Journal | 2015

The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control

Richard M. Oxborough; Raphael N’Guessan; Rebecca Jones; Jovin Kitau; Corine Ngufor; David Malone; Franklin W. Mosha; Mark Rowland

BackgroundThe rapid selection of pyrethroid resistance throughout sub-Saharan Africa is a serious threat to malaria vector control. Chlorfenapyr is a pyrrole insecticide which shows no cross resistance to insecticide classes normally used for vector control and is effective on mosquito nets under experimental hut conditions. Unlike neurotoxic insecticides, chlorfenapyr owes its toxicity to disruption of metabolic pathways in mitochondria that enable cellular respiration. A series of experiments explored whether standard World Health Organization (WHO) guidelines for evaluation of long-lasting insecticidal nets, developed through testing of pyrethroid insecticides, are suitable for evaluation of non-neurotoxic insecticides.MethodsThe efficacy of WHO recommended cone, cylinder and tunnel tests was compared for pyrethroids and chlorfenapyr. To establish bioassay exposure times predictive of insecticide-treated net (ITN) efficacy in experimental hut trials, standard three-minute bioassays of pyrethroid and chlorfenapyr ITNs were compared with longer exposures. Mosquito behaviour and response to chlorfenapyr ITN in bioassays conducted at night were compared to day and across a range of temperatures representative of highland and lowland transmission.ResultsStandard three-minute bioassay of chlorfenapyr produced extremely low levels of mortality compared to pyrethroids. Thirty-minutexa0day-time bioassay produced mortality closer to hut efficacy of chlorfenapyr ITN but still fell short of the WHO threshold. Overnight tunnel test with chlorfenapyr produced 100% mortality and exceeded the WHO threshold of 80%. The endogenous circadian activity rhythm of anophelines results in inactivity by day and raised metabolism and flight activity by night. A model which explains improved toxicity of chlorfenapyr ITN when tested at night, and during the day at higher ambient temperature, is that activation of chlorfenapyr and disruption of respiratory pathways is enhanced when the insect is more metabolically and behaviourally active.ConclusionsTesting according to current WHO guidelines is not suitable for certain types of non-neurotoxic insecticide which, although highly effective in field trials, would be overlooked at the screening stage of evaluation through bioassay. Testing methods must be tailored to the characteristics and mode of action of each insecticide class. The WHO tunnel test on night-active anophelines is the most reliable bioassay for identifying the toxicity of novel insecticides.


PLOS Neglected Tropical Diseases | 2017

A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria

Sheila B Ogoma; Arnold S Mmando; Johnson K Swai; Sebastian Horstmann; David Malone; Gerry F. Killeen

Background The vapor phase of the volatile pyrethroid transfluthrin incapacitates mosquitoes and prevents them from feeding. Although existing emanator products for delivering volatile pyrethroids protect against outdoor mosquito bites, they are too short-lived to be practical or affordable for routine use in low-income settings. New transfluthrin emanators, comprised simply of treated hessian fabric strips, have recently proven highly protective against outdoor-biting vectors of lymphatic filariasis, arboviruses and malaria, but their full protective lifespan, minimum dose requirements, and range of protection have not previously been assessed. Methodology The effects of transfluthrin-treated hessian strips upon mosquito biting exposure of users and nearby non-users, as well as dependence of protection upon treatment dose, were measured outdoors in rural Tanzania using human landing catches (HLC). Principal findings Strips treated with 10ml of transfluthrin prevented at least three quarters (p < 0.001) of outdoor bites by Anopheles arabiensis, Culex spp. and Mansonia spp. mosquitoes, and >90% protection against bites on warmer nights with higher evaporation rates, for at least one year. Strips treated with this high dose also reduced biting exposure of non-users at a distance of up to 5m from the strips for An. arabiensis (p < 0.001) and up to 2m for Mansonia spp. (p = 0.008), but provided no protection to non-users against Culex spp. No evidence of increased risk for non-users, caused by diversion of mosquitoes to unprotected individuals, was found at any distance within an 80m radius. A dose of only 1ml provided equivalent protection to the 10ml dose against An. arabiensis, Culex spp. and Mansonia spp. mosquitoes over 6 months (p < 0.001). Conclusions/Significance Transfluthrin-treated hessian emanators provide safe, affordable, long-term protection against several different pathogen-transmitting mosquito taxa that attack humans outdoors, where they are usually active and cannot be protected by bed nets or residual sprays with conventional, solid-phase insecticides.


Emerging Infectious Diseases | 2017

Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles

Gerry F. Killeen; John P. Masalu; Dingani Chinula; Emmanouil A Fotakis; Deogratius R Kavishe; David Malone; Fredros O. Okumu

We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.


Parasites & Vectors | 2015

Comparability between insecticide resistance bioassays for mosquito vectors: time to review current methodology?

Henry F. Owusu; Danica Jančáryová; David Malone; Pie Müller

BackgroundInsecticides play an integral role in the control of mosquito-borne diseases. With resistance to insecticides on the rise, surveillance of the target population for optimal choice of insecticides is a necessity. The Centers for Disease Control and Prevention (CDC) bottle assay and the World Health Organization (WHO) susceptibility test are the most frequently used methods in insecticide resistance monitoring. However, the two bioassays differ in terms of insecticide delivery and how insecticide susceptibility is measured. To evaluate how equivalent data from the two assays are, we compared the two methods side-by-side.MethodsWe did a literature search from 1998 to December 2014 to identify publications that performed both assays on the same mosquito population and compared the results. We then tested the WHO and CDC bioassays on laboratory strains of Aedes aegypti, Anopheles stephensi, An. gambiae and An. arabiensis with different insecticide resistance levels against permethrin, λ-cyhalothrin, DDT, bendiocarb and malathion. In addition, we also measured the relationship between time-to-knockdown and 24xa0h mortality.ResultsBoth published data and results from the present laboratory experiments showed heterogeneity in the comparability of the two bioassays. Following their standard procedures, the two assays showed poor agreement in detecting resistance at the WHO cut-off mark of 90xa0% (Cohen’s κu2009=u20090.06). There was better agreement when 24xa0h mortality was recorded in the CDC bottle assay and compared with that of the WHO susceptibility test (Cohen’s κu2009=u20090.5148). Time-to-knockdown was shown to be an unreliable predictor of 24xa0h mortality.ConclusionEven though the two assays can detect insecticide resistance, they may not be used interchangeably. While the diagnostic dose in the WHO susceptibility test does not allow for detecting shifts at low or extreme resistance levels, time-to-knockdown measured in the CDC bottle assay is a poor predictor of 24xa0h mortality. Therefore, dose–response assays could provide the most flexibility. New standardized bioassays are needed that produce consistent dose–response measurements with a minimal number of mosquitoes.


Parasites & Vectors | 2016

Oviposition ecology and species composition of Aedes spp. and Aedes aegypti dynamics in variously urbanized settings in arbovirus foci in southeastern Côte d’Ivoire

Julien B. Z. Zahouli; Jürg Utzinger; Maurice A Adja; Pie Müller; David Malone; Yao Tano; Benjamin G. Koudou

BackgroundAedes mosquito-transmitted outbreaks of dengue and yellow fever have been reported from rural and urban parts of Côte d’Ivoire. The present study aimed at assessing Aedes spp. oviposition ecology in variously urbanized settings within arbovirus foci in southeastern Côte d’Ivoire.MethodsAedes spp. eggs were sampled using a standard ovitrap method from January 2013 to April 2014 in different ecosystems of rural, suburban and urban areas. Emerged larvae were reared until the adult stage for species identification.ResultsAedes spp. oviposition ecology significantly varied from rural-to-urban areas and according to the ecozones and the seasons. Species richness of Aedes spp. gradually decreased from rural (eight species) to suburban (three species) and urban (one species) areas. Conversely, emerged adult Aedes spp. mean numbers were higher in the urban (1.97 Aedes/ovitrap/week), followed by the suburban (1.44 Aedes/ovitrap/week) and rural (0.89 Aedes/ovitrap/week) areas. Aedes aegypti was the only species in the urban setting (100xa0%), and was also the predominant species in suburban (85.5xa0%) and rural (63.3xa0%) areas. The highest Ae. aegypti mean number was observed in the urban (1.97 Ae. aegypti/ovitrap/week), followed by the suburban (1.20 Ae. aegypti/ovitrap/week) and rural (0.57 Ae. aegypti/ovitrap/week) areas. Aedes africanus (9.4xa0%), Ae. dendrophilus (8.0xa0%), Ae. metallicus (1.3xa0%) in the rural, and Ae. vittatus (6.5xa0%) and Ae. metallicus (1.2xa0%) in the suburban areas each represented more than 1xa0% of the total Aedes fauna. In all areas, Aedes species richness and abundance were higher in the peridomestic zones and during the rainy season, with stronger variations in species richness in the rural and in abundance in the urban areas. Besides, the highest Culex quinquefasciatus abundance was found in the urban areas, while Eretmapodites chrysogaster was restricted to the rural areas.ConclusionsUrbanization correlates with a substantially higher abundance in Aedes mosquitoes and a regression of the Aedes wild species towards a unique presence of Ae. aegypti in urban areas. Aedes wild species serve as bridge vectors of arboviruses in rural areas, while Ae. aegypti amplifies arbovirus transmission in urban areas. Our results have important ramifications for dengue and yellow fever vector control and surveillance strategies in arbovirus foci in southeastern Côte d’Ivoire.


PLOS Neglected Tropical Diseases | 2017

Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d'Ivoire

Julien B. Z. Zahouli; Benjamin G. Koudou; Pie Müller; David Malone; Yao Tano; Jürg Utzinger

Background Failure in detecting naturally occurring breeding sites of Aedes mosquitoes can bias the conclusions drawn from field studies, and hence, negatively affect intervention outcomes. We characterized the habitats of immature Aedes mosquitoes and explored species dynamics along a rural-to-urban gradient in a West Africa setting where yellow fever and dengue co-exist. Methodology Between January 2013 and October 2014, we collected immature Aedes mosquitoes in water containers in rural, suburban, and urban areas of south-eastern Côte d’Ivoire, using standardized sampling procedures. Immature mosquitoes were reared in the laboratory and adult specimens identified at species level. Principal findings We collected 6,159, 14,347, and 22,974 Aedes mosquitoes belonging to 17, 8, and 3 different species in rural, suburban, and urban environments, respectively. Ae. aegypti was the predominant species throughout, with a particularly high abundance in urban areas (99.374%). Eleven Aedes larval species not previously sampled in similar settings of Côte d’Ivoire were identified: Ae. albopictus, Ae. angustus, Ae. apicoargenteus, Ae. argenteopunctatus, Ae. haworthi, Ae. lilii, Ae. longipalpis, Ae. opok, Ae. palpalis, Ae. stokesi, and Ae. unilineatus. Aedes breeding site positivity was associated with study area, container type, shade, detritus, water turbidity, geographic location, season, and the presence of predators. We found proportionally more positive breeding sites in urban (2,136/3,374, 63.3%), compared to suburban (1,428/3,069, 46.5%) and rural areas (738/2,423, 30.5%). In the urban setting, the predominant breeding sites were industrial containers (e.g., tires and discarded containers). In suburban areas, containers made of traditional materials (e.g., clay pots) were most frequently encountered. In rural areas, natural containers (e.g., tree holes and bamboos) were common and represented 22.1% (163/738) of all Aedes-positive containers, hosting 18.7% of the Aedes fauna. The predatory mosquito species Culex tigripes was commonly sampled, while Toxorhynchites and Eretmapodites were mostly collected in rural areas. Conclusions/significance In Côte d’Ivoire, urbanization is associated with high abundance of Aedes larvae and a predominance of artificial containers as breeding sites, mostly colonized by Ae. aegypti in urban areas. Natural containers are still common in rural areas harboring several Aedes species and, therefore, limiting the impact of systematic removal of discarded containers on the control of arbovirus diseases.


Malaria Journal | 2017

Presence of susceptible wild strains of Anopheles gambiae in a large industrial palm farm located in Aboisso, South-Eastern of Côte d’Ivoire

Cécile M. A. Sadia-Kacou; Ludovic P. Ahoua Alou; Ako V. C. Edi; Céline Mabot Yobo; Maurice A Adja; Allassane Ouattara; David Malone; Alphonsine A Koffi; Yao Tano; Benjamin G. Koudou

AbstractBackgroundThe effectiveness of malaria control programmes through implementation of vector control activities is challenged by the emergence ofn insecticide resistance. In the South-Eastern region of Côte d’Ivoire, where palm oil plantations remain the predominant agricultural crop, the susceptibility of wild Anopheles gambiae sensu lato species is still unknown and thus requires a particular attention. The current study was carried out to address the gap by in-depth characterization of susceptibility level of An. gambiae mosquitoes from Ehania-V1 to WHO-recommended doses of six insecticides belonging to available classes and also to screen a subset for target site mutations and possible inhibition of P450 enzymes.ResultsOverall results showed variable resistance profile across WHO-recommended insecticides tested. Mortalities ranged from 8.3% (the lowest mortality was recorded with DDT) to 98% (the highest mortality was recorded with fenitrothion). Importantly, mortality to deltamethrin, an important pyrethroid used in public health for impregnation of mosquito nets was close to 98%, precluding a possible susceptibility to this insecticide, albeit further investigations are required. Pre-exposure of An. gambiae s.l. to PBO did not show any significant variation across insecticides (pxa0=xa00.002), although a partial increase was detected for alphacypermethrin and bendiocarb, suggesting a low of activity of cytochrome P450 enzymes (pxa0=xa00.277). High frequency of kdr L1014F was recorded in both Anopheles coluzzii (91%) and in An. gambiae (96%), associated with ace-1R G119S mutation at low frequency (<20%).ConclusionThe high mortality rate to deltamethrin, organophosphate and the non-detection of P450 activity in resistance observed in Ehania-V1 appears as a positive outcome for further control strategies as metabolic-based P450 resistance remains major challenge to manage. These results should help the National Malaria Control Programme when designing strategies for vector control in palm oil areas of Côte d’Ivoire.


Acta Tropica | 2015

Evaluating the sterilizing effect of pyriproxyfen treated mosquito nets against Anopheles gambiae at different blood-feeding intervals

Aneesa Jaffer; Natacha Protopopoff; Franklin W. Mosha; David Malone; Mark Rowland; Richard M. Oxborough

Pyrethroid resistant malaria vectors are widespread throughout sub-Saharan Africa and new insecticides with different modes of action are urgently needed. Pyriproxyfen is a juvenile hormone mimic that reduces fecundity and fertility of adult Anopheles mosquitoes when used as a contact insecticide. A long-lasting insecticidal net incorporating pyriproxyfen is under development. As wild, host-seeking females may succeed in blood-feeding at different intervals after initial contact with mosquito nets the aim of this study was to determine the effect that age and gonotrophic status (nulliparous or parous) and the interval between initial pyriproxyfen exposure and blood-feeding has in terms of subsequent reduced fecundity and fertility. Anopheles gambiae s.s. were exposed to pyriproxyfen LLIN for three minutes in WHO cone bioassays. Four regimens were tested with different blood-feeding intervals A-1 hour (nulliparous), B-1 hour (parous), C-24h (nulliparous), or D-120h (nulliparous) after pyriproxyfen exposure. Mosquito oviposition rate, fecundity and fertility of eggs were recorded for several days. All four treatment regimens produced levels of mortality similar to unexposed females. The overall reduction in reproductive rate of 99.9% for regimen A relative to the untreated net was primarily due to oviposition inhibition in exposed females (97%). Pyriproxyfen was equally effective against older parous mosquitoes and when blood-feeding was 24h after exposure. Regimen D produced a reduction in reproductive rate of 60.1% but this was of lesser magnitude than other regimens and was the only regimen that failed to reduce fertility of laid eggs, indicating the effects of pyriproxyfen exposure on reproduction are to some extent reversible as mosquitoes age. In an area of moderate to high mosquito net coverage a host-seeking mosquito is likely to contact a treated mosquito net before: (a) penetrating a holed net and blood-feeding shortly after exposure or, (b) be frustrated by intact nets before succeeding in blood-feeding on an unprotected individual the following night. Mosquito nets are an appropriate delivery system for pyriproxyfen, based on the large reductions in reproductive rate when blood-feeding between 1h and 24h after exposure. Combining with a pyrethroid should be an effective approach if susceptible mosquitoes are killed and resistant mosquitoes sterilized.


Parasites & Vectors | 2014

The use of motion detectors to estimate net usage by householders, in relation to mosquito density in central Cote d’Ivoire: preliminary results

Benjamin G. Koudou; David Malone; Janet Hemingway

BackgroundThe difficulty of accurately assessing LLIN use has led us to test electronic data logging motion detectors to provide quantitative data on household LLIN usage.MethodsThe main movements associated with an LLIN when appropriately used for malaria control were characterised under laboratory conditions. Data output from motion detectors attached to the LLINs associated with these specific movements were collated. In preliminary field studies in central Cote d’Ivoire, a pre-tested and validated questionnaire was used to identify the number of days householders claimed to have slept under LLINs. This information was compared to data downloaded from the motion detectors.ResultsOutput data recording movement on the x, y, and z axes from the data loggers was consistently associated with the specific net movements. Recall of LLIN usage reported by questionnaires after a week was overestimated by 13.6%. This increased to 22.8% after 2xa0weeks and 38.7% after a month compared to information from the data loggers. Rates of LLIN use were positively correlated with An.gambiae s.s biting density (LRTu2009=u2009273.70; Pu2009<u20090.001).ConclusionThis study showed that motion detectors can be used to provide a useful quantitative record of LLIN use. This new methodology provides a supplementary means of surveying bed net usage.

Collaboration


Dive into the David Malone's collaboration.

Top Co-Authors

Avatar

Benjamin G. Koudou

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Janet Hemingway

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Pie Müller

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Gerry F. Killeen

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Joseph Pryce

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Leslie Choi

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürg Utzinger

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge