David Martin-Hidalgo
University of Extremadura
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Martin-Hidalgo.
Theriogenology | 2011
David Martin-Hidalgo; F.J. Barón; Maria Julia Bragado; P. Carmona; A. Robina; Luis J. Garcia-Marin; M.C. Gil
Melatonin (MLT) is an efficient antioxidant that protects cells and tissues and initiates a host of receptor-mediated effects. In order to enhance the life span of refrigerated boar semen, our aim was to evaluate the effects of addition of 1 μM MLT to commercially produced pig semen (33 seminal doses from 14 boars) that had been preserved at 17 °C for 7 days. Samples without MLT served as controls. On Days 1, 4 and 7, we evaluated motility parameters and the percentage of total motile and progressively motile spermatozoa by a computer-aided sperm analysis system. Viability (SYBR-14/PI), acrosomal status (FITC-PNA/PI), membrane fluidity (M-540/YoPro-1) and mitochondrial membrane potential status (JC-1) were evaluated by flow cytometry. MLT treatment significantly enhanced the percentage of static spermatozoa after 7 days of storage and significantly reduced the percentage of progressively motile spermatozoa on Day 7. The velocity characteristics (VCL, VSL and VAP) were significantly higher for MLT-treated samples on Day 1 and were their lowest on Day 7. With regard to flow cytometry results, the percentage of viable spermatozoa with an intact acrosome was higher in MLT samples throughout the entire storage period. In addition, there was a significantly higher proportion of live spermatozoa on Day 7 in the samples that had not been treated with MLT. The proportion of spermatozoa showing a high mitochondrial membrane potential remained at similar levels (P > 0.05) throughout the trial. Although the findings of the present study revealed that 1 μM MLT increased the proportion of live sperm with an intact acrosome, this treatment did not enhance the spermatic quality of refrigerated boar semen.
PLOS ONE | 2012
Ana Hurtado de Llera; David Martin-Hidalgo; M.C. Gil; Luis J. Garcia-Marin; Maria Julia Bragado
The main functions of spermatozoa required for fertilization are dependent on the energy status and metabolism. AMP-activated kinase, AMPK, acts a sensor and regulator of cell metabolism. As AMPK studies have been focused on somatic cells, our aim was to investigate the expression of AMPK protein in spermatozoa and its possible role in regulating motility. Spermatozoa from boar ejaculates were isolated and incubated under different conditions (38,5°C or 17°C, basal medium TBM or medium with Ca2+ and bicarbonate TCM, time from 1–24 hours) in presence or absence of AMPK inhibitor, compound C (CC, 30 µM). Western blotting reveals that AMPK is expressed in boar spermatozoa at relatively higher levels than in somatic cells. AMPK phosphorylation (activation) in spermatozoa is temperature-dependent, as it is undetectable at semen preservation temperature (17°C) and increases at 38,5°C in a time-dependent manner. AMPK phosphorylation is independent of the presence of Ca2+ and/or bicarbonate in the medium. We confirm that CC effectively blocks AMPK phosphorylation in boar spermatozoa. Analysis of spermatozoa motility by CASA shows that CC treatment either in TBM or in TCM causes a significant reduction of any spermatozoa motility parameter in a time-dependent manner. Thus, AMPK inhibition significantly decreases the percentages of motile and rapid spermatozoa, significantly reduces spermatozoa velocities VAP, VCL and affects other motility parameters and coefficients. CC treatment does not cause additional side effects in spermatozoa that might lead to a lower viability even at 24 h incubation. Our results show that AMPK is expressed in spermatozoa at high levels and is phosphorylated under physiological conditions. Moreover, our study suggests that AMPK regulates a relevant function of spermatozoa, motility, which is essential for their ultimate role of fertilization.
Biochimica et Biophysica Acta | 2013
Ana Hurtado de Llera; David Martin-Hidalgo; Joan E. Rodríguez-Gil; M. Cruz Gil; Luis J. Garcia-Marin; M. Julia Bragado
Spermatozoa undergo energy- and metabolism-dependent processes to successfully fertilize the oocyte. AMP-activated protein kinase, AMPK, is a sensor of cell energy. We recently showed that AMPK controls spermatozoa motility. Our aims are i) to investigate the intracellular localization of AMPK in boar spermatozoa by immunofluorescence, ii) to study whether AMPK plays a role in other relevant processes of spermatozoa: mitochondrial membrane potential (∆Ψm), plasma membrane lipid disorganization, outward phosphatidylserine (PS) exposure, acrosome integrity and induced-acrosome reaction by flow cytometry and iii) to investigate intracellular AMPK pathways by western blot. Spermatozoa were incubated under different conditions in the presence or absence of compound C (CC, 30μM), an AMPK inhibitor and/or cAMP analog 8Br-cAMP. AMPKα protein is expressed at the entire acrosome and at the midpiece of spermatozoa flagellum, whereas phospho-Thr(172)-AMPK is specifically localized at the apical part of acrosome and at flagellum midpiece. CC treatment rapidly confers head-to-head aggregation-promoting property to spermatozoa. Long term AMPK inhibition in spermatozoa incubated in TCM significantly reduces high ∆Ψm. Moreover, AMPK inhibition significantly induces plasma membrane lipid disorganization and simultaneously reduces outward PS translocation at plasma membrane in a time-dependent manner. Acrosomal integrity in TCM is significantly enhanced when AMPK is inhibited. However, neither acrosome reaction nor membrane lipid disorganization induced by ionophore A23187 are affected by CC. AMPK phosphorylation is potently stimulated upon PKA activation in spermatozoa. This work suggests that AMPK, lying downstream of PKA, regulates at different levels mammalian spermatozoa membrane function.
Theriogenology | 2013
David Martin-Hidalgo; Ana Hurtado de Llera; Marc Yeste; M. Cruz Gil; M. Julia Bragado; Luis J. Garcia-Marin
Boar semen preservation for later use in artificial insemination is performed by diluting semen in an appropriate medium and then lowering the temperature to decrease spermatozoa metabolism. The adenosine monophosphate-activated kinase, AMPK, is a key cell energy sensor that controls cell metabolism and recently has been identified in boar spermatozoa. Our aim was to investigate the role of AMPK in spermatozoa functional parameters including motility, mitochondrial membrane potential, plasma membrane integrity, acrosome integrity, and cell viability during long-term boar semen storage at 17 °C in Beltsville thawing solution. Boar seminal doses were diluted in Beltsville thawing solution in the presence or absence of different concentrations of AMPK inhibitor, compound C (1, 10, and 30 μM) and evaluations were performed at 1, 2, 4, 7, or 10 days. Data demonstrate that AMPK becomes phosphorylated at threonine(172) (active) during storage of boar semen reaching maximum levels at Day 7. Moreover, AMPK inhibition during boar semen storage causes: (1) a potent inhibition of spermatozoa motility; (2) a reduction in the percentage of spermatozoa showing high mitochondria membrane potential; (3) a rise in the percentage of spermatozoa displaying high plasma membrane scrambling; and (4) a loss of acrosomal membrane integrity. Our study suggests that AMPK activity plays an important role in the maintenance of the spermatozoa quality during long-term storage of boar semen.
Biology of Reproduction | 2014
Ana Hurtado de Llera; David Martin-Hidalgo; M.C. Gil; Luis J. Garcia-Marin; Maria Julia Bragado
ABSTRACT Spermatozoa successfully fertilize oocytes depending on cell energy-sensitive processes. We recently showed that the cell energy sensor, the AMP-activated protein kinase (AMPK), plays a relevant role in spermatozoa by regulating motility as well as plasma membrane organization and acrosomal integrity, and contributes to the maintenance of mitochondrial membrane potential. As the signaling pathways that control AMPK activity have been studied exclusively in somatic cells, our aim is to investigate the intracellular pathways that regulate AMPK phosphorylation at Thr172 (activity) in male germ cells. Boar spermatozoa were incubated under different conditions in the presence or absence of Ca2+, 8Br-cAMP, IBMX, PMA, the AMPK activator A769662, or inhibitors of PKA, PKC, or CaMKKalpha/beta. AMPK phosphorylation was evaluated by Western blot using anti-phospho-Thr172-AMPK antibody. Data show that AMPK phosphorylation in spermatozoa is potently stimulated by an elevation of cAMP levels through the activation of PKA, as the PKA inhibitor H89 blocks phospho-Thr172-AMPK. Another mechanism to potently activate AMPK is Ca2+ that acts through two pathways, PKA (blocked by H89) and CaMKKalpha/beta (blocked by STO-609). Moreover, phospho-Thr172-AMPK levels greatly increased upon PKC activation induced by PMA, and the PKC inhibitor Ro-32-0432 inhibits TCM-induced AMPK activation. Different stimuli considered as cell stresses (rotenone, cyanide, sorbitol, and complete absence of intracellular Ca2+ by BAPTA-AM) also cause AMPK phosphorylation in spermatozoa. In summary, AMPK activity in boar spermatozoa is regulated upstream by different kinases, such as PKA, CaMKKalpha/beta, and PKC, as well as by the essential intracellular messengers for spermatozoan function, Ca2+ and cAMP levels.
Molecular Human Reproduction | 2015
A. Hurtado de Llera; David Martin-Hidalgo; M.C. Gil; Luis J. Garcia-Marin; Maria Julia Bragado
We recently demonstrated that AMPK inhibition in spermatozoa regulates motility, plasma membrane organization, acrosome integrity and mitochondrial membrane potential. As AMPK activity varies in different energy conditions induced by sperm environment, this work investigates the functional effects of AMPK activation in boar spermatozoa. Spermatozoa were incubated under non-stimulating (TBM) or Ca(2+) and [Formula: see text]-stimulating (TCM) media in the presence/absence of AMPK activator, A769662, for different times. AMPK activity, evaluated as Thr(172) phosphorylation by western blot, is effectively increased by A769662 in spermatozoa. AMPK activation significantly reduces the percentage of motile spermatozoa under Ca(2+) and/or [Formula: see text]-stimulating conditions. Moreover, AMPK activation in spermatozoa incubated in TBM or TCM significantly reduces curvilinear VCL, straight-line VSL and average VAP velocities, which subsequently lead to a significant decrease in the percentage of rapid spermatozoa (VAP > 80 μm/s). The effect of AMPK activation on motility is intensified by the absence of BSA in the incubation medium. AMPK activation for a short time prevents the decline in cell viability and in the sperm population displaying high mitochondrial membrane potential which is induced by Ca(2+) and [Formula: see text]. Sustained (24 h) AMPK activation under TBM or TCM significantly increases both lipid disorganization and phosphatidylserine externalization in the sperm plasma membrane, and diminishes the acrosome membrane integrity. In summary, AMPK activation modifies essential sperm processes such as motility, viability, mitochondrial membrane potential, acrosome membrane integrity, and organization and fluidity of plasma membrane. As these spermatozoa processes are required under different environmental conditions when transiting through the female reproductive tract to achieve fertilization, we conclude that balanced levels of AMPK activity are essential for regulating sperm function.
Reproduction | 2012
Maria Julia Bragado; M.C. Gil; David Martin-Hidalgo; Ana Hurtado de Llera; Noelia Bravo; Antonio David Moreno; Luis J. Garcia-Marin
During the capacitation process, spermatozoa acquire the ability to fertilize an oocyte, and upregulation of cAMP-dependent protein tyrosine phosphorylation occurs. Recently, Src family tyrosine kinase (SFK) has been involved in spermatozoa capacitation as a key PKA-dependent tyrosine kinase in several species. This work investigates the expression and role of SFK in porcine spermatozoa. SFK members Lyn and Yes are identified in porcine spermatozoa by western blotting as well as two proteins named SFK1 and SFK2 were also detected by their tyrosine 416 phosphorylation, a key residue for SFK activation. Spermatozoa with SFK1 and SFK2 increase their Y416 phosphorylation time-dependently under capacitating conditions compared with noncapacitating conditions. The specific SFK inhibitor SU6656 unaffected porcine spermatozoa motility or viability. Moreover, SFK inhibition in spermatozoa under capacitating conditions leads to a twofold increase in both nonstimulated and calcium-induced acrosome reaction. Our data show that capacitating conditions lead to a time-dependent increase in actin polymerization in boar spermatozoa and that long-term incubation with SFK inhibitor causes a reduction in the F-actin content. In summary, this work shows that the SFK members Lyn and Yes are expressed in porcine spermatozoa and that SFK1 and SFK2 are phosphorylated (activated) during capacitation. Our results point out the important role exerted by SFK in the acrosome reaction, likely mediated in part by its involvement in the actin polymerization process that accompanies capacitation, and rule out its involvement in porcine spermatozoa motility.
Theriogenology | 2016
A. Hurtado de Llera; David Martin-Hidalgo; M.C. Gil; Luis J. Garcia-Marin; Maria Julia Bragado
Detailed molecular mechanisms mediating signal transduction cascades that regulate boar sperm function involving Ser/Thr and tyrosine phosphorylation of proteins have been reviewed previously. Therefore, this review will focus in those kinase pathways identified recently (<10 years) in boar spermatozoa that regulate different functional spermatozoa processes. AMP-activated protein kinase (AMPK) is a cell energy sensor kinase that was first identified in mammalian spermatozoa in 2012, and since then it has emerged as an essential regulator of boar sperm function. Signaling pathways leading to AMPK activation in boar sperm are highlighted in this review (PKA, CaMKKα/β, and PKC as well as Ca(2+) and cAMP messengers as upstream regulators). Interestingly, stimuli considered as cell stress (hyperosmotic stress, inhibition of mitochondrial activity, absence of intracellular Ca(2+)) markedly activate AMPK in boar spermatozoa. Moreover, AMPK plays a remarkable and necessary regulatory role in mammalian sperm function, controlling essential boar sperm functional processes such as motility, viability, mitochondrial membrane potential, organization and fluidity of plasma membrane, and outer acrosome membrane integrity. These mentioned processes are all required under fluctuating environment of spermatozoa when transiting through the female reproductive tract to achieve fertilization. An applied role of AMPK in artificial insemination techniques is also suggested as during boar seminal doses preservation at 17 °C, physiological levels of AMPK activity markedly increase (maximum on Day 7) and result essential to maintain the aforementioned fundamental sperm processes. Moreover, regulation of sperm function exerted by the glycogen synthase kinase 3 and Src family kinase pathways is summarized.
Animal Reproduction Science | 2013
David Martin-Hidalgo; F.J. Barón; A. Robina; Maria Julia Bragado; A. Hurtado de Llera; Luis J. Garcia-Marin; M.C. Gil
During boar semen liquid preservation, extender is one of the factors that influence storage tolerance of spermatozoa. However, there are few studies about intra-breed variation in the preservation of semen quality during storage in different extenders. Similarly, boar breed is generally not considered a possible factor influencing variation in the semen storage tolerance in a particular extender. The aim of this study was to compare boar semen storage potential, in terms of the ability to maintain sperm viability and motility, of two currently used long-term extenders, MR-A and XCell. Extended semen from two breeds, Iberian and Duroc that had been stored at 17°C for up to 7 days was used. Intra- and inter-breed effect was studied. On Days 1, 4 and 7 (Day 0=day of semen collection), motility parameters and the percentage of total motile sperm and progressively motile sperm using a CASA system was evaluated. Viability (SYBR-14/PI) was evaluated by flow cytometry. Within each breed and for each storage day, there were differences between extenders, although semen tolerance to preservation was more influenced by the extender in the Iberian than in the Duroc breed. Neither breed nor extender influenced the percentage of viable spermatozoa during the storage time. Moreover, differences in motility parameters were observed between breeds, although the differences were greater when the XCell extender was used. In conclusion, both extender and breed influence motility characteristics of liquid-stored boar semen, so both aspects have to be considered in the design of comparative studies about stored boar semen quality from different breeds or with different extenders. Further studies are needed to corroborate these findings.
Asian Journal of Andrology | 2017
Calle-Guisado; de Llera Ah; David Martin-Hidalgo; Mijares J; M.C. Gil; Alvarez Is; Maria Julia Bragado; Luis J. Garcia-Marin
AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work′s aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.