Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Martinez-Martin is active.

Publication


Featured researches published by David Martinez-Martin.


Nature Methods | 2013

Multiparametric imaging of biological systems by force-distance curve–based AFM

Yves F. Dufrêne; David Martinez-Martin; Izhar Medalsy; David Alsteens; Daniel J. Müller

A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve–based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions.


Nature Nanotechnology | 2017

Imaging modes of atomic force microscopy for application in molecular and cell biology

Yves F. Dufrêne; Toshio Ando; Ricardo Garcia; David Alsteens; David Martinez-Martin; Andreas Engel; Christoph Gerber; Daniel J. Müller

Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.


Nature Protocols | 2014

Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM

Moritz Pfreundschuh; David Martinez-Martin; Estefania Mulvihill; Susanne Wegmann; Daniel J. Müller

A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve–based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1–3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution.


Nature Nanotechnology | 2016

Nanomechanical mapping of first binding steps of a virus to animal cells

David Alsteens; Richard Newton; Rajib Schubert; David Martinez-Martin; Martin Delguste; Botond Roska; Daniel J. Müller

Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50u2005nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1u2005ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.


PLOS ONE | 2012

Resolving Structure and Mechanical Properties at the Nanoscale of Viruses with Frequency Modulation Atomic Force Microscopy

David Martinez-Martin; Carolina Carrasco; Mercedes Hernando-Pérez; Pedro J. de Pablo; Julio Gómez-Herrero; Rebeca Pérez; Mauricio G. Mateu; José L. Carrascosa; Daniel Kiracofe; John Melcher; Arvind Raman

Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25–50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called “dissipation channel” in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Mechanical control of mitotic progression in single animal cells

Cedric J. Cattin; Marcel Düggelin; David Martinez-Martin; Christoph Gerber; Daniel J. Müller; Martin P. Stewart

Significance In animal tissue, most adherent cells round up against confinement to conduct mitosis. Impaired cell rounding is thought to perturb tissue development and homeostasis and contribute to progression of cancer. Due to the lack of suitable experimental tools, however, insight into the mechanical robustness of mitosis in animal cells remains limited. Here we introduce force-feedback–controlled ion beam-sculpted cantilevers to confine single cells and characterize their progression through mitosis. Our approach reveals critical yield forces that trigger cell cortex herniation, loss of F-actin homogeneity, dissipation of intracellular pressure, critical cell-height decrease, mitotic spindle defects, and resultant perturbation of mitotic progression. Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback–controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50–100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.


Beilstein Journal of Nanotechnology | 2012

Drive-amplitude-modulation atomic force microscopy: from vacuum to liquids

Miriam Jaafar; David Martinez-Martin; Mariano Cuenca; John Melcher; Arvind Raman; Julio Gómez-Herrero

Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode.


Journal of Applied Physics | 2010

Higher-order eigenmodes of qPlus sensors for high resolution dynamic atomic force microscopy

Raimond C. Tung; Thorsten Wutscher; David Martinez-Martin; R. Reifenberger; Franz J. Giessibl; Arvind Raman

The time response of tuning-fork based sensors can be improved by operating them at higher eigenmodes because a measurement takes at least one oscillation cycle in dynamic force microscopy and the oscillation period of the second eigenmode is only about one sixth of the fundamental mode. Here we study the higher-order eigenmodes of quartz qPlus sensors [Bettac et al., Nanotechnology 20, 264009 (2009); Giessibl and Reichling, Nanotechnology 16, S118 (2005); Giessibl, Appl. Phys. Lett. 76, 1470 (2000); and Giessibl, Appl. Phys. Lett. 73, 3956 (1998)], their equivalent stiffness, and piezoelectric sensitivity, while paying special attention to the influence of the mass and rotary inertia of the sensing tip which is attached to the end of the qPlus quartz cantilever. A combination of theoretical modeling and scanning laser Doppler vibrometry is used to study the eigenmodes of qPlus sensors with tungsten tips. We find that the geometry of tungsten tips can greatly influence the shape, equivalent stiffness, and...


Nature | 2017

Inertial picobalance reveals fast mass fluctuations in mammalian cells

David Martinez-Martin; Gotthold Fläschner; Benjamin M. Gaub; Sascha Martin; Richard Newton; Corina Beerli; Jason Mercer; Christoph Gerber; Daniel J. Müller

The regulation of size, volume and mass in living cells is physiologically important, and dysregulation of these parameters gives rise to many diseases. Cell mass is largely determined by the amount of water, proteins, lipids, carbohydrates and nucleic acids present in a cell, and is tightly linked to metabolism, proliferation and gene expression. Technologies have emerged in recent years that make it possible to track the masses of single suspended cells and adherent cells. However, it has not been possible to track individual adherent cells in physiological conditions at the mass and time resolutions required to observe fast cellular dynamics. Here we introduce a cell balance (a ‘picobalance’), based on an optically excited microresonator, that measures the total mass of single or multiple adherent cells in culture conditions over days with millisecond time resolution and picogram mass sensitivity. Using our technique, we observe that the mass of living mammalian cells fluctuates intrinsically by around one to four per cent over timescales of seconds throughout the cell cycle. Perturbation experiments link these mass fluctuations to the basic cellular processes of ATP synthesis and water transport. Furthermore, we show that growth and cell cycle progression are arrested in cells infected with vaccinia virus, but mass fluctuations continue until cell death. Our measurements suggest that all living cells show fast and subtle mass fluctuations throughout the cell cycle. As our cell balance is easy to handle and compatible with fluorescence microscopy, we anticipate that our approach will contribute to the understanding of cell mass regulation in various cell states and across timescales, which is important in areas including physiology, cancer research, stem-cell differentiation and drug discovery.


Physical Review Letters | 2010

Upper bound for the magnetic force gradient in graphite.

David Martinez-Martin; Miriam Jaafar; Rubén Pérez; Julio Gómez-Herrero; A. Asenjo

In this work we investigate possible ferromagnetic order on the graphite surface by using magnetic force microscopy (MFM). Our data show that the tip-sample interaction along the steps is independent of an external magnetic field. Moreover, by combining kelvin probe force microscopy and MFM, we are able to separate the electrostatic and magnetic interactions along the steps obtaining an upper bound for the magnetic force gradient of 16 μN/m. Our experiments suggest the absence of ferromagnetic signal in graphite at room temperature.

Collaboration


Dive into the David Martinez-Martin's collaboration.

Top Co-Authors

Avatar

Julio Gómez-Herrero

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Jaafar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Alsteens

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Ricardo Garcia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge