Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Méchin is active.

Publication


Featured researches published by David Méchin.


Optics Express | 2015

Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

Uffe Møller; Yi Yu; Irnis Kubat; Christian Rosenberg Petersen; Xin Gai; Laurent Brilland; David Méchin; Celine Caillaud; Johann Troles; Barry Luther-Davies; Ole Bang

A low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation. The dispersion of the fiber was measured from 2.9 to 4.2 μm and was in good correspondence with the calculated dispersion. An optical parametric amplifier delivering 320 fs pulses with a peak power of 14.8 kW at a repetition rate of 21 MHz was used to pump 18 cm of suspended core fiber at different wavelengths from 3.3 to 4.7 μm. By pumping at 4.4 μm with a peak power of 5.2 kW coupled to the fiber a supercontinuum spanning from 1.7 to 7.5 μm with an average output power of 15.6 mW and an average power >5.0 μm of 4.7 mW was obtained.


Optics Express | 2010

Casting method for producing low-loss chalcogenide microstructured optical fibers

Quentin Coulombier; Laurent Brilland; Patrick Houizot; Thierry Chartier; Thanh Nam Nguyen; F. Smektala; Gilles Renversez; Achille Monteville; David Méchin; Thierry Pain; Hervé Orain; Jean-Christophe Sangleboeuf; Johann Troles

We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes. Fiber losses, which are the lowest recorded so far for selenium based MOFs, are equal to the material losses, meaning that the process has no effect on the glass quality.


Optics Express | 2010

Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm

Johann Troles; Quentin Coulombier; Guillaume Canat; M. Duhant; William Renard; Perrine Toupin; Laurent Calvez; Gilles Renversez; F. Smektala; M. El Amraoui; Jean-Luc Adam; Thierry Chartier; David Méchin; Laurent Brilland

Microstructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various As(38)Se(62) chalcogenide microstructured fibers have been prepared in order to combine large non linear index of these glasses with the mode control offered by MOF structures. Small core fibers have been drawn to enhance the non linearities. In one of these, three Stokes order have been generated by Raman scattering in a suspended core MOF pumped at 1995 nm.


Optics Express | 2010

Experimental realization of a Mode-locked parabolic Raman fiber oscillator

Claude Aguergaray; David Méchin; V.I. Kruglov; John D. Harvey

The generation of self-similar parabolic pulses (similaritons) has so far only been obtained in single-pass Raman amplifier configurations, or in rare-earth doped fiber lasers. We report here the first demonstration of a mode-locked parabolic pulse fiber laser, which can potentially be run at any wavelength using Raman gain. This new all-fiber ring similariton laser scheme (cf. Fig. 1) has been designed using a full theoretical model. The output similariton pulses have a true parabolic shape, a linear chirp and an energy of 22nJ.


Optics Express | 2014

Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers.

Irnis Kubat; Christian Rosenberg Petersen; Uffe Møller; Angela B. Seddon; Trevor M. Benson; Laurent Brilland; David Méchin; Peter M. Moselund; Ole Bang

We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T(FWHM)=3.5ps, P0=20kW, ν(R)=30MHz, and P(avg)=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.9-4.1μm SC at the -30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λ(ZDW)) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm. This allows the MIR solitons in the ZBLAN fiber SC to couple into anomalous dispersion in the chalcogenide fiber and further redshift out to the fiber loss edge at around 9μm. The final 0.9-9μm SC covers over 3 octaves in the MIR with around 15mW of power converted into the 6-9μm range.


Optics Express | 2006

180-nm wavelength conversion based on Bragg scattering in an optical fiber

David Méchin; Richard Provo; John D. Harvey; C. J. McKinstrie

Efficient, wideband and tunable optical wavelength conversion over 180 nm by four-wave mixing (Bragg scattering) in a fiber is demonstrated experimentally. This process has the potential to translate optical data (states of light) without the noise pollution associated with parametric amplification and spontaneous Raman scattering.


Optics Express | 2011

Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation

Stefano Taccheo; Hrvoje Gebavi; Achille Monteville; O. Le Goffic; David Landais; David Méchin; Denis Tregoat; Benoit Cadier; Thierry Robin; Daniel Milanese; Tim Durrant

We report on an extensive investigation of photodarkening in Yb-doped silica fibers. A set of similar fibers, covering a large Yb concentration range, was made so as to compare the photodarkening induced losses. Careful measurements were made to ensure equal and uniform inversion for all the tested fibers. The results show that, with the specific set-up, the stretching parameter obtained through fitting has a very limited variation. This gives more meaning to the fitting parameters. Results tend to indicate a square law dependence of the concentration of excited ions on the final saturated loss. We also demonstrate self-similarity of loss evolution when experimental curves are simply normalized to fitting parameters. This evidence of self-similarity also supports the possibility of introducing a preliminary figure of merit for Yb-doped fiber. This will allow the impact of photodarkening on laser/amplifier devices to be evaluated.


Optics Express | 2011

Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber

Sy Dat Le; Duc Minh Nguyen; Monique Thual; Laurent Bramerie; Marcia Costa e Silva; Kevin Lenglé; Thierry Chartier; Laurent Brilland; David Méchin; Perrine Toupin; Johann Troles

We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.13 µm, a record Kerr nonlinearity of 46,000 W(-1) km(-1) is demonstrated with attenuation loss of 0.9 dB/m. Four-wave mixing is experimented by using a 1m-long chalcogenide fiber for 10 GHz and 42.7 GHz signals. Four-wave mixing efficiencies of -5.6 dB at 10 GHz and -17.5 dB at 42.7 GHz are obtained. We also observed higher orders of four-wave mixing for both repetition rates.


Optics Express | 2011

Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers.

Hrvoje Gebavi; Stefano Taccheo; Daniel Milanese; Achille Monteville; Olivier Le Goffic; David Landais; David Méchin; Denis Tregoat; Benoit Cadier; Thierry Robin

The present work describes photodarkening from the viewpoint of cooperative luminescence. The temporal evolution of both effects was measured simultaneously by means of ytterbium doped aluminosilicate fibers for concentrations up to 1.8 wt% Yb3+. The quadratic dependence of photodarkening and cooperative luminescence versus dopant concentration was observed. The change in the photodarkening and cooperative luminescence mutual dynamics for highly and low doped fibers is ascribed to a different ion number which forms the cluster. Cooperative luminescence is proved to be a natural probe for photodarkening since it provides new pieces of information and contributes to the photodarkening mechanism description.


Optics Letters | 2013

Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure

Hrvoje Gebavi; Stefano Taccheo; Laurent Lablonde; Benoit Cadier; Thierry Robin; David Méchin; Denis Tregoat

In this work, the influence of photodarkening (PD) and photobleaching (PB) on the lasing features of the ytterbium-doped aluminosilicate fiber lasers is examined. Simultaneous PD and PB with 633 nm irradiation was monitored at the lasing wavelength of 1070 nm and compared with individually caused PD and PB effects. The variation of laser threshold and slope efficiency was reported. By analyzing the laser performances it was found that the ratio of excess loss at 633 and 1070 nm is expected to be less than 20. In addition, considerable mitigation of the PD with 633 nm light irradiation is demonstrated.

Collaboration


Dive into the David Méchin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Chartier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Tregoat

École nationale d'ingénieurs de Brest

View shared research outputs
Researchain Logo
Decentralizing Knowledge