Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Melvin is active.

Publication


Featured researches published by David Melvin.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Chromosomal transposition of PiggyBac in mouse embryonic stem cells

Wei Wang; Chengyi Lin; Dong Lu; Zeming Ning; Tony Cox; David Melvin; Xiaozhong Wang; Allan Bradley; Pentao Liu

Transposon systems are widely used for generating mutations in various model organisms. PiggyBac (PB) has recently been shown to transpose efficiently in the mouse germ line and other mammalian cell lines. To facilitate PBs application in mammalian genetics, we characterized the properties of the PB transposon in mouse embryonic stem (ES) cells. We first measured the transposition efficiencies of PB transposon in mouse embryonic stem cells. We next constructed a PB/SB hybrid transposon to compare PB and Sleeping Beauty (SB) transposon systems and demonstrated that PB transposition was inhibited by DNA methylation. The excision and reintegration rates of a single PB from two independent genomic loci were measured and its ability to mutate genes with gene trap cassettes was tested. We examined PBs integration site distribution in the mouse genome and found that PB transposition exhibited local hopping. The comprehensive information from this study should facilitate further exploration of the potential of PB and SB DNA transposons in mammalian genetics.


Cell | 2013

Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes

Jacqueline K. White; Anna-Karin Gerdin; Natasha A. Karp; Edward Ryder; Marija Buljan; James Bussell; Jennifer Salisbury; Simon Clare; Neil J. Ingham; Christine Podrini; Richard Houghton; Jeanne Estabel; Joanna Bottomley; David Melvin; David Sunter; Niels C. Adams; David Tannahill; Darren W. Logan; Daniel G. MacArthur; Jonathan Flint; Vinit B. Mahajan; Stephen H. Tsang; Ian Smyth; Fiona M. Watt; William C. Skarnes; Gordon Dougan; David J. Adams; Ramiro Ramirez-Solis; Allan Bradley; Karen P. Steel

Summary Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PaperClip


Nucleic Acids Research | 2014

The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

Gautier Koscielny; Gagarine Yaikhom; Vivek Iyer; Terrence F. Meehan; Hugh Morgan; Julian Atienza-Herrero; Andrew Blake; Chao-Kung Chen; Richard Easty; Armida Di Fenza; Tanja Fiegel; Mark Grifiths; Alan Horne; Natasha A. Karp; Natalja Kurbatova; Jeremy Mason; Peter Matthews; Darren J. Oakley; Asfand Qazi; Jack Regnart; Ahmad Retha; Luis A. Santos; Duncan Sneddon; Jonathan Warren; Henrik Westerberg; Robert J. Wilson; David Melvin; Damian Smedley; Steve D. M. Brown; Paul Flicek

The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.


Nucleic Acids Research | 2007

A recombineering based approach for high-throughput conditional knockout targeting vector construction

Waiin Chan; Nina Costantino; Ruixue Li; Song Choon Lee; Qin Su; David Melvin; Donald L. Court; Pentao Liu

Functional analysis of mammalian genes in vivo is primarily achieved through analysing knockout mice. Now that the sequencing of several mammalian genomes has been completed, understanding functions of all the genes represents the next major challenge in the post-genome era. Generation of knockout mutant mice has currently been achieved by many research groups but only by making individual knockouts, one by one. New technological advances and the refinements of existing technologies are critical for genome-wide targeted mutagenesis in the mouse. We describe here new recombineering reagents and protocols that enable recombineering to be carried out in a 96-well format. Consequently, we are able to construct 96 conditional knockout targeting vectors simultaneously. Our new recombineering system makes it a reality to generate large numbers of precisely engineered DNA constructs for functional genomics studies.


Nucleic Acids Research | 2010

EuroPhenome: a repository for high-throughput mouse phenotyping data

Hugh Morgan; Tim Beck; Andrew Blake; Hilary Gates; Niels C. Adams; Guillaume Debouzy; Sophie Leblanc; Christoph Lengger; Holger Maier; David Melvin; Hamid Meziane; Dave Richardson; Sara Wells; Jacqui White; Joe Wood; Martin Hrabé de Angelis; Steve D. M. Brown; John M. Hancock; Ann-Marie Mallon

The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies.


Mammalian Genome | 2007

Mouse Phenotype Database Integration Consortium: integration [corrected] of mouse phenome data resources.

John M. Hancock; Niels C. Adams; Vassilis Aidinis; Andrew Blake; Molly Bogue; Steve D.M. Brown; Elissa J. Chesler; Duncan Davidson; Christopher Duran; Janan T. Eppig; Valérie Gailus-Durner; Hilary Gates; Georgios V. Gkoutos; Simon Greenaway; Martin Hrabé de Angelis; George Kollias; Sophie Leblanc; Kirsty Lee; Christoph Lengger; Holger Maier; Ann-Marie Mallon; Hiroshi Masuya; David Melvin; Werner Müller; Helen Parkinson; Glenn Proctor; Eli Reuveni; Paul N. Schofield; Aadya Shukla; Cynthia L. Smith

Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterize the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first-line phenotyping data on novel mutations, data on the normal features of inbred lines) at many sites worldwide. For the most efficient use of these data sets, we have initiated a process to develop standards for the description of phenotypes (using ontologies) and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.


PLOS ONE | 2012

Robust and Sensitive Analysis of Mouse Knockout Phenotypes

Natasha A. Karp; David Melvin; Sanger Mouse Genetics; Richard F. Mott

A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student’s t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene’s function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained.


Mammalian Genome | 2012

Accessing data from the International Mouse Phenotyping Consortium: state of the art and future plans

Ann-Marie Mallon; Vivek Iyer; David Melvin; Hugh Morgan; Helen Parkinson; Steve D.M. Brown; Paul Flicek; William C. Skarnes

The International Mouse Phenotyping Consortium (IMPC) (http://www.mousephenotype.org) will reveal the pleiotropic functions of every gene in the mouse genome and uncover the wider role of genetic loci within diverse biological systems. Comprehensive informatics solutions are vital to ensuring that this vast array of data is captured in a standardised manner and made accessible to the scientific community for interrogation and analysis. Here we review the existing EuroPhenome and WTSI phenotype informatics systems and the IKMC portal, and present plans for extending these systems and lessons learned to the development of a robust IMPC informatics infrastructure.


PLOS Biology | 2015

Applying the ARRIVE Guidelines to an In Vivo Database

Natasha A. Karp; Terry Meehan; Hugh Morgan; Jeremy Mason; Andrew Blake; Natalja Kurbatova; Damian Smedley; Julius Jacobsen; Richard F. Mott; Vivek Iyer; Peter Matthews; David Melvin; Sara Wells; Ann M. Flenniken; Hiroshi Masuya; Shigeharu Wakana; Jacqueline K. White; K. C. Kent Lloyd; Corey Reynolds; Richard Paylor; David B. West; Karen L. Svenson; Elissa J. Chesler; Martin Hrabě de Angelis; Glauco P. Tocchini-Valentini; Tania Sorg; Yann Herault; Helen Parkinson; Ann-Marie Mallon; Steve D. M. Brown

The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were developed to address the lack of reproducibility in biomedical animal studies and improve the communication of research findings. While intended to guide the preparation of peer-reviewed manuscripts, the principles of transparent reporting are also fundamental for in vivo databases. Here, we describe the benefits and challenges of applying the guidelines for the International Mouse Phenotyping Consortium (IMPC), whose goal is to produce and phenotype 20,000 knockout mouse strains in a reproducible manner across ten research centres. In addition to ensuring the transparency and reproducibility of the IMPC, the solutions to the challenges of applying the ARRIVE guidelines in the context of IMPC will provide a resource to help guide similar initiatives in the future.


Mammalian Genome | 2008

Integration of Mouse Phenome Data Resources

John M. Hancock; Niels C. Adams; Vassilis Aidinis; Andrew Blake; Judith A. Blake; Molly Bogue; Steve D.M. Brown; Elissa J. Chesler; Duncan Davidson; Christopher Duran; Janan T. Eppig; Valérie Gailus-Durner; Hilary Gates; Georgios V. Gkoutos; Simon Greenaway; Martin Hrabé de Angelis; George Kollias; Sophie Leblanc; Kirsty Lee; Christoph Lengger; Holger Maier; Ann-Marie Mallon; Hiroshi Masuya; David Melvin; Werner Müller; Helen Parkinson; Glenn Proctor; Eli Reuveni; Paul N. Schofield; Aadya Shukla

Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.

Collaboration


Dive into the David Melvin's collaboration.

Top Co-Authors

Avatar

Ann-Marie Mallon

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew Blake

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Christoph Lengger

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Sophie Leblanc

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Hugh Morgan

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Natasha A. Karp

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Niels C. Adams

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Masuya

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Helen Parkinson

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Hilary Gates

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge