Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Mikkelsen is active.

Publication


Featured researches published by David Mikkelsen.


Nuclear Fusion | 1992

Simulations of deuterium-tritium experiments in TFTR

R.V. Budny; M.G. Bell; H. Biglari; M. Bitter; C.E. Bush; C. Z. Cheng; E. D. Fredrickson; B. Grek; K. W. Hill; H. Hsuan; A. Janos; D.L. Jassby; D. Johnson; L. C. Johnson; B. LeBlanc; D. McCune; David Mikkelsen; H. Park; A. T. Ramsey; Steven Anthony Sabbagh; S.D. Scott; J. Schivell; J. D. Strachan; B. C. Stratton; E. J. Synakowski; G. Taylor; M. C. Zarnstorff; S.J. Zweben

A transport code (TRANSP) is used to simulate future deuterium-tritium (DT) experiments in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modelling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modelling. Fusion energy yields and alpha particle parameters are calculated, including profiles of the alpha slowing down time, the alpha average energy, and the Alfven speed and frequency. Two types of simulation are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the D0 in the neutral beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that alpha heating will enhance the plasma parameters or that confinement will increase with the addition of tritium. The maximum relative fusion yield calculated for these simulations is QDT ~ 0.3, and the maximum alpha contribution to the central toroidal β is βα(0) ~ 0.5%. The stability of toroidicity induced Alfven eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed


Computer Physics Communications | 1988

Baldur: A one-dimensional plasma transport code

Clifford E. Singer; D.E. Post; David Mikkelsen; M.H. Redi; A. McKenney; A. Silverman; F.G.P. Seidl; P. H. Rutherford; R.J. Hawryluk; William D. Langer; L. Foote; D.B. Heifetz; W. A. Houlberg; M.H. Hughes; R.V. Jensen; G. Lister; J. Ogden

Abstract A version of the BALDUR plasma transport code which calculates the evolution of plasma parameters is documented. This version uses an MHD equilibrium which can be approximated by concentric circular flux surfaces. Transport of up to six species of ionized particles, of electron and ion energy, and of poloidal magnetic field is computed. A wide variety of source terms are calculated including those due to neutral gas, fusion and auxiliary heating. The code is primarily designed for modelling tokamak plasmas.


Journal of Fusion Energy | 1981

Techniques for measuring the alpha-particle distribution in magnetically confined plasmas

D. Post; David Mikkelsen; R. A. Hulse; L. D. Stewart; J. C. Weisheit

Methods are proposed for measuring the alpha-particle distribution in magnetically confined fusion plasmas using neutral-atom doping beams, ultraviolet spectroscopy, and neutral particle detectors. In the first method, single charge exchange reactions, A0+He2+→A+ +(He+)*, are used to populate then=2 andn=3 levels of He+. The ultraviolet photons from the decaying excited states are Doppler shifted by 5–10 Å from those produced by the thermalized alpha-particle “ash.” In the second method, double charge exchange reactions, A0+He2+→A2++He0, enable fast neutralized alpha particles to escape from the plasma and be detected by neutral particle analyzers. These methods are distinguished from similar techniques of observing plasma impurities in that, in principle, they allow a determination of the dependence of the distribution function on energy and pitch angle, as well as on spatial position. Detector configurations are analyzed, count rates are estimated, and the detector feasibility is discussed. A preliminary analysis of the feasibility of the required neutral beams is presented, and exploratory experiments on existing devices are suggested.


Fusion Technology | 1999

Physics design of the national spherical torus experiment

S.M. Kaye; M. Ono; Yueng-Kay Martin Peng; D. B. Batchelor; Mark Dwain Carter; Wonho Choe; Robert J. Goldston; Yong-Seok Hwang; E. Fred Jaeger; Thomas R. Jarboe; Stephen C. Jardin; D.W. Johnson; R. Kaita; Charles Kessel; H.W. Kugel; R. Maingi; R. Majeski; Janhardan Manickam; J. Menard; David Mikkelsen; David J. Orvis; Brian A. Nelson; F. Paoletti; N. Pomphrey; Gregory Rewoldt; Steven Anthony Sabbagh; Dennis J Strickler; E. J. Synakowski; J. R. Wilson

The mission of the National Spherical Torus Experiment (NSTX) is to prove the principles of spherical torus physics by producing high-beta toroidal plasmas that are non-inductively sustained, and whose current profiles are in steady-state. NSTX will be one of the first ultra low a[P(input) up to 11 MW] in order to produce high-beta toroidal (25 to 40%), low collisionality, high bootstrap fraction (less than or equal to 70%) discharges. Both radio-frequency (RF) and neutral-beam (NB) heating and current drive will be employed. Built into NSTX is sufficient configurational flexibility to study a range of operating space and the resulting dependences of the confinement, micro- and MHD stability, and particle and power handling properties. NSTX research will be carried out by a nationally based science team.


Nuclear Fusion | 2012

Quantitative comparison of experimental impurity transport with nonlinear gyrokinetic simulation in an Alcator C-Mod L-mode plasma

N.T. Howard; M. Greenwald; David Mikkelsen; M.L. Reinke; A.E. White; D. Ernst; Y. Podpaly; J. Candy

Nonlinear gyrokinetic simulations of impurity transport are compared to experimental impurity transport for the first time. The GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) was used to perform global, nonlinear gyrokinetic simulations of impurity transport for a standard Alcator C-Mod, L-mode discharge. The laser blow-off technique was combined with soft x-ray measurements of a single charge state of calcium to provide time-evolving profiles of this non-intrinsic, non-recycling impurity over a radial range of 0.0 ≤ r/a ≤ 0.6. Experimental transport coefficient profiles and their uncertainties were extracted from the measurements using the impurity transport code STRAHL and rigorous Monte Carlo error analysis. To best assess the agreement of gyrokinetic simulations with the experimental profiles, the sensitivity of the GYRO predicted impurity transport to a wide range of turbulence-relevant plasma parameters was investigated. A direct comparison of nonlinear gyrokinetic simulation and experiment is presented with an in depth discussion of error sources and a new data analysis methodology.


Journal of Physics B | 1980

Charge exchange as a recombination mechanism in high-temperature plasmas

R. A. Hulse; D E Post; David Mikkelsen

Charge exchange with neutral hydrogen is examined as a recombination mechanism for multi-charged impurity ions present in high-temperature fusion plasmas. At sufficiently low electron densities, fluxes of atomic hydrogen produced by either the injection of neutral heating beams or the background of thermal neutrals can yield an important or even dominant recombination process for such ions. Equilibrium results are given for selected impurity elements showing the altered ionization balance and radiative cooling rate produced by the presence of various neutral populations. A notable result is that the stripping of impurities to relatively non-radiative ionization states with increasing electron temperature can be postponed or entirely prevented by the application of intense neutral beam heating power. A time dependent calculation modelling the behavior of iron in recent PLT tokamak high power neutral beam heating experiments is also presented.


Journal of Nuclear Materials | 1987

Plasma-material interactions in TFTR

H.F. Dylla; Team Tftr Team; M.G. Bell; W. Blanchard; P. P. Boody; N. Bretz; R.V. Budny; C.E. Bush; Joseph L. Cecchi; S.A. Cohen; S. K. Combs; S. Davis; B.L. Doyle; P.C. Efthimion; A. C. England; H.P. Eubank; R.J. Fonck; E. D. Fredrickson; L R Grisham; R.J. Goldston; B. Grek; R. Groebner; R.J. Hawryluk; D.B. Heifetz; H. W. Hendel; K. W. Hill; S. Hiroe; R. Hulse; D. Johnson; L. C. Johnson

This paper presents a summary of plasma-material interactions which influence the operation of TFTR with high current (≤ 2.2 MA) ohmically heated, and high-power (∼ 10 MW) neutral-beam heated plasmas. The conditioning procedures which are applied routinely to the first-wall hardware are reviewed. Fueling characteristics during gas, pellet, and neutral-beam fueling are described. Recycling coefficients near unity are observed for most gas fueled discharges. Gas fueled discharges after helium discharge conditioning of the toroidal bumper limiter, and discharges fueled by neutral beams and pellets, show R<1. In the vicinity of the gas fueled density limit (at ne = 5–6 × 1019 m−3) values of Zeff are ≦1.5. Increases in Zeff of ≦1 have been observed with neutral beam heating of 10 MW. The primary low Z impurity is carbon with concentrations decreasing from ∼10% to <1% with increasing ne. Oxygen densities tend to increase with ne, and at the ohmic plasma density limit oxygen and carbon concentrations are comparable. Chromium getter experiments and He2+/D+ plasma comparisons indicate that the limiter is the primary source of carbon and that the vessel wall is a significant source of the oxygen impurity. Metallic impurities, consisting of the vacuum vessel metals (Ni, Fe, Cr) have significant (∼10−4 ne) concentrations only at low plasma densities (ne <1019 m−3). The primary source of metallic impurities is most likely ion sputtering from metals deposited on the carbon limiter surface.


Plasma Physics and Controlled Fusion | 1991

Overview of TFTR transport studies

R.J. Hawryluk; V. Arunasalam; Cris W. Barnes; Michael Beer; M.G. Bell; R. Bell; H. Biglari; M. Bitter; R. Boivin; N. Bretz; R. V. Budny; C.E. Bush; C. Z. Cheng; T. K. Chu; S Cohen; Steven C. Cowley; P C Efhimion; R.J. Fonck; E. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L R Grisham; G. W. Hammett; W.W. Heidbrink; K. W. Hill; J Hosea; R A Hulse; H. Hsuan

A review of TFTR plasma transport studies is presented. Parallel transport and the confinement of suprathermal ions are found to be relatively well described by theory. Cross-field transport of the thermal plasma, however, is anomalous with the momentum diffusivity being comparable to the ion thermal diffusivity and larger than the electron thermal diffusivity in neutral beam heated discharges. Perturbative experiments have studied nonlinear dependencies in the transport coefficients and examined the role of possible nonlocal phenomena. The underlying turbulence has been studied using microwave scattering, beam emission spectroscopy and microwave reflectometry over a much broader range in k perpendicular to than previously possible. Results indicate the existence of large-wavelength fluctuations correlated with enhanced transport.


Physics of fluids. B, Plasma physics | 1990

Correlations of heat and momentum transport in the TFTR tokamak

S.D. Scott; V. Arunasalam; Cris W. Barnes; M.G. Bell; M. Bitter; R. Boivin; N. Bretz; R.V. Budny; C.E. Bush; A. Cavallo; T. K. Chu; S.A. Cohen; P. Colestock; S. Davis; D. Dimock; H.F. Dylla; P.C. Efthimion; A. B. Erhrardt; R.J. Fonck; E. D. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L.R. Grisham; G. W. Hammett; R.J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov

Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low‐recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≊χi>χe. Recent measurements have confirmed similar behavior in broad‐density L‐mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test‐particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked‐density TFTR ‘‘supershots’’ with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In hi...


Journal of Nuclear Materials | 1984

Initial limiter and getter operation in TFTR

Joseph L. Cecchi; M.G. Bell; M. Bitter; W. Blanchard; N. Bretz; C.E. Bush; S.A. Cohen; J. Coonrod; S. Davis; D. Dimock; B.L. Doyle; H.F. Dylla; P.C. Efthimion; R.J. Fonck; R.J. Goldston; S. von Goeler; B. Grek; D.J. Grove; R.J. Hawryluk; D.B. Heifetz; H. W. Hendel; K. W. Hill; R. Hulse; J. Isaacson; D. Johnson; L. C. Johnson; R. Kaita; S. Kaye; S.J. Kilpatrick; J. Kiraly

Abstract During the recent ohmic heating experiments on TFTR, the movable limiter array, preliminary inner bumper limiter, and prototype ZrAl alloy bulk getter surface pumping system were brought into operation. This paper summarizes the operational experience and plasma characteristics obtained with these components. The near-term upgrades of these systems are also discussed.

Collaboration


Dive into the David Mikkelsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Grek

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. W. Hammett

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.J. Goldston

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge