Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Mitlin is active.

Publication


Featured researches published by David Mitlin.


Energy and Environmental Science | 2014

Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites

Tyler Stephenson; Zhi Li; Brian C. Olsen; David Mitlin

This is the first targeted review of the synthesis – microstructure – electrochemical performance relations of MoS2 – based anodes and cathodes for secondary lithium ion batteries (LIBs). Molybdenum disulfide is a highly promising material for LIBs that compensates for its intermediate insertion voltage (∼2 V vs. Li/Li+) with a high reversible capacity (up to 1290 mA h g−1) and an excellent rate capability (e.g. 554 mA h g−1 after 20 cycles at 50 C). Several themes emerge when surveying the scientific literature on the subject: first, we argue that there is excellent data to show that truly nanoscale structures, which often contain a nanodispersed carbon phase, consistently possess superior charge storage capacity and cycling performance. We provide several hypotheses regarding why the measured capacities in such architectures are well above the theoretical predictions of the known MoS2 intercalation and conversion reactions. Second, we highlight the growing microstructural and electrochemical evidence that the layered MoS2 structure does not survive past the initial lithiation cycle, and that subsequently the electrochemically active material is actually elemental sulfur. Third, we show that certain synthesis techniques are consistently demonstrated to be the most promising for battery applications, and describe these in detail. Fourth, we present our selection of synthesis methods that we believe to have a high potential for creating improved MoS2 LIB electrodes, but are yet to be tried.


Energy and Environmental Science | 2013

Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors

Zhi Li; Zhanwei Xu; Xuehai Tan; Huanlei Wang; Chris M. B. Holt; Tyler Stephenson; Brian C. Olsen; David Mitlin

In this work we demonstrate that biomass-derived proteins serve as an ideal precursor for synthesizing carbon materials for energy applications. The unique composition and structure of the carbons resulted in very promising electrochemical energy storage performance. We obtained a reversible lithium storage capacity of 1780 mA h g−1, which is among the highest ever reported for any carbon-based electrode. Tested as a supercapacitor, the carbons exhibited a capacitance of 390 F g−1, with an excellent cycle life (7% loss after 10 000 cycles). Such exquisite properties may be attributed to a unique combination of a high specific surface area, partial graphitization and very high bulk nitrogen content. It is a major challenge to derive carbons possessing all three attributes. By templating the structure of mesoporous cellular foam with egg white-derived proteins, we were able to obtain hierarchically mesoporous (pores centered at ∼4 nm and at 20–30 nm) partially graphitized carbons with a surface area of 805.7 m2 g−1 and a bulk N-content of 10.1 wt%. When the best performing sample was heated in Ar to eliminate most of the nitrogen, the Li storage capacity and the specific capacitance dropped to 716 mA h g−1 and 80 F g−1, respectively.


ACS Nano | 2013

Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

Huanlei Wang; Zhanwei Xu; Alireza Kohandehghan; Zhi Li; Kai Cui; Xuehai Tan; Tyler Stephenson; Cecil K. King’ondu; Chris M. B. Holt; Brian C. Olsen; Jin Kwon Tak; Don Harfield; Anthony O. Anyia; David Mitlin

We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.


ACS Nano | 2013

Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes

Jia Ding; Huanlei Wang; Zhi Li; Alireza Kohandehghan; Kai Cui; Zhanwei Xu; Beniamin Zahiri; Xuehai Tan; Elmira Memarzadeh Lotfabad; Brian C. Olsen; David Mitlin

We demonstrate that peat moss, a wild plant that covers 3% of the earths surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na(+). By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g(-1) (after 10 cycles, 50 mA g(-1)), with ∼150 mAh g(-1) of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g(-1) at the 210th cycle, stable capacity of 203 mAh g(-1) at 500 mA g(-1)).


ACS Nano | 2014

High Density Sodium and Lithium Ion Battery Anodes from Banana Peels

Elmira Memarzadeh Lotfabad; Jia Ding; Kai Cui; Alireza Kohandehghan; W. Peter Kalisvaart; Mike Hazelton; David Mitlin

Banana peel pseudographite (BPPG) offers superb dual functionality for sodium ion battery (NIB) and lithium ion battery (LIB) anodes. The materials possess low surface areas (19-217 m(2) g(-1)) and a relatively high electrode packing density (0.75 g cm(-3) vs ∼1 g cm(-3) for graphite). Tested against Na, BPPG delivers a gravimetric (and volumetric) capacity of 355 mAh g(-1) (by active material ∼700 mAh cm(-3), by electrode volume ∼270 mAh cm(-3)) after 10 cycles at 50 mA g(-1). A nearly flat ∼200 mAh g(-1) plateau that is below 0.1 V and a minimal charge/discharge voltage hysteresis make BPPG a direct electrochemical analogue to graphite but with Na. A charge capacity of 221 mAh g(-1) at 500 mA g(-1) is degraded by 7% after 600 cycles, while a capacity of 336 mAh g(-1) at 100 mAg(-1) is degraded by 11% after 300 cycles, in both cases with ∼100% cycling Coulombic efficiency. For LIB applications BPPG offers a gravimetric (volumetric) capacity of 1090 mAh g(-1) (by material ∼2200 mAh cm(-3), by electrode ∼900 mAh cm(-3)) at 50 mA g(-1). The reason that BPPG works so well for both NIBs and LIBs is that it uniquely contains three essential features: (a) dilated intergraphene spacing for Na intercalation at low voltages; (b) highly accessible near-surface nanopores for Li metal filling at low voltages; and (c) substantial defect content in the graphene planes for Li adsorption at higher voltages. The <0.1 V charge storage mechanism is fundamentally different for Na versus for Li. A combination of XRD and XPS demonstrates highly reversible Na intercalation rather than metal underpotential deposition. By contrast, the same analysis proves the presence of metallic Li in the pores, with intercalation being much less pronounced.


Energy and Environmental Science | 2015

Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors

Jia Ding; Huanlei Wang; Zhi Li; Kai Cui; Dimitre Karpuzov; Xuehai Tan; Alireza Kohandehghan; David Mitlin

This is the first report of a hybrid sodium ion capacitor (NIC) with the active materials in both the anode and the cathode being derived entirely from a single precursor: peanut shells, which are a green and highly economical waste globally generated at over 6 million tons per year. The electrodes push the envelope of performance, delivering among the most promising sodiation capacity–rate capability–cycling retention combinations reported in the literature for each materials class. Hence the resultant NIC also offers a state-of-the-art cyclically stable combination of energy and power, not only in respect to previously but also as compared to Li ion capacitors (LICs). The ion adsorption cathode based on Peanut Shell Nanosheet Carbon (PSNC) displays a hierarchically porous architecture, a sheet-like morphology down to 15 nm in thickness, a surface area on par with graphene materials (up to 2396 m2 g−1) and high levels of oxygen doping (up to 13.51 wt%). Scanned from 1.5–4.2 V vs. Na/Na+ PSNC delivers a specific capacity of 161 mA h g−1 at 0.1 A g−1 and 73 mA h g−1 at 25.6 A g−1. A low surface area Peanut Shell Ordered Carbon (PSOC) is employed as an ion intercalation anode. PSOC delivers a total capacity of 315 mA h g−1 with a flat plateau of 181 mA h g−1 occurring below 0.1 V (tested at 0.1 A g−1), and is stable at 10 000 cycles (tested at 3.2 A g−1). The assembled NIC operates within a wide temperature range (0–65 °C), yielding at room temperature (by active mass) 201, 76 and 50 W h kg−1 at 285, 8500 and 16 500 W kg−1, respectively. At 1.5–3.5 V, the hybrid device achieved 72% capacity retention after 10 000 cycles tested at 6.4 A g−1, and 88% after 100 000 cycles at 51.2 A g−1.


ACS Nano | 2014

Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys

Behdokht Farbod; Kai Cui; W. Peter Kalisvaart; Martin Kupsta; Beniamin Zahiri; Alireza Kohandehghan; Elmira Memarzadeh Lotfabad; Zhi Li; Erik J. Luber; David Mitlin

Here we provide the first report on several compositions of ternary Sn-Ge-Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg(-1) (at 85 mAg(-1)) and 662 mAhg(-1) after 50 charge-discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg(-1) at a current density of 8500 mAg(-1) (∼10C). A survey of published literature indicates that 833 mAhg(-1) is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg(-1) represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 is a composite of 10-15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.


Energy and Environmental Science | 2014

Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor

Zhi Li; Zhanwei Xu; Huanlei Wang; Jia Ding; Beniamin Zahiri; Chris M. B. Holt; Xuehai Tan; David Mitlin

Here we demonstrate a facile template-free synthesis route to create macroscopically monolithic carbons that are both highly nitrogen rich (4.1–7.6 wt%) and highly microporous (SA up to 1405 m2 g−1, 88 vol% micropores). While such materials, which are derived from common chicken egg whites, are expected to be useful in a variety of applications, they are extremely promising for electrochemical capacitors based on aqueous electrolytes. The Highly Functionalized Activated Carbons (HFACs) demonstrate a specific capacitance of >550 F g−1 at 0.25 A g−1 and >350 F g−1 at 10 A g−1 in their optimized state. These are among the highest values reported in the literature for carbon-based electrodes, including for systems such as templated carbons and doped graphene. We show that HFACs serve as ideal negative electrodes in asymmetric supercapacitors, where historically the specific capacitance of the oxide-based positive electrode was mismatched with the much lower specific capacitance of the opposing AC. An asymmetric cell employing HFACs demonstrates a 2× higher specific energy and a 4× higher volumetric energy density as compared to the one employing a high surface area commercial AC. With 3.5 mg cm−2 of HFAC opposing 5.0 mg cm−2 of NiCo2O4/graphene, specific energies (active mass normalized) of 48 W h kg−1 at 230 W kg−1 and 28 W h kg−1 at 1900 W kg−1 are achieved. The asymmetric cell performance is among the best in the literature for hybrid aqueous systems, and actually rivals cells operating with a much wider voltage window in organic electrolytes.


Nanotechnology | 2006

Metallic NEMS components fabricated from nanocomposite Al–Mo films

Zonghoon Lee; Colin Ophus; L.M. Fischer; Nathan Nelson-Fitzpatrick; K. Westra; Stephane Evoy; Velimir Radmilovic; U Dahmen; David Mitlin

We have fabricated fully released nano-electro-mechanical system (NEMS) cantilevers of various geometries from metallic alloy nanocomposite films. At thicknesses of 4.3 and 20.0 nm, these are the thinnest released metal cantilevers reported in the literature to date. Such device dimensions are very difficult to achieve using conventional metal films. We were able to overcome this limitation by using room-temperature co-sputtering to synthesize nanocomposite alloy films of Al–Mo. A systematic investigation of microstructure and properties as a function of Mo content resulted in an optimum film composition of Al–32 at.%Mo with a unique microstructure comprising a dense distribution of nano-scale Mo crystallites dispersed in an amorphous Al-rich matrix. These films were found to exhibit unusually high nanoindentation hardness and a very significant reduction in roughness compared with pure Al, while maintaining resistivity in the metallic range. A single-anchored cantilever 5 µm long, 800 nm wide and 20 nm thick showed a resonance frequency of 608 kHz, yielding a Youngs modulus of 112 GPa, in good agreement with a reduced modulus of 138 GPa measured by nanoindentation.


Applied Physics Letters | 2006

Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1−x

J. C. Thorp; K. Sieradzki; Lei Tang; P. A. Crozier; A. Misra; Michael Nastasi; David Mitlin; S. T. Picraux

We demonstrate the synthesis of nanoporous Pt thin films on Si by electrochemical dealloying. Amorphous PtxSi1−x films (∼100–250nm thick) are formed by electron beam codeposition and dealloyed in aqueous HF solutions at an electrochemical potential sufficient to selectively remove Si while allowing self-assembly of Pt into a nanoporous structure. The Pt nanoporous layers have a pore size of 5–20nm, ligament thickness ∼5nm, a surface area enhancements >20 times, and an ultrafine grain polycrystalline microstructure.

Collaboration


Dive into the David Mitlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Li

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huanlei Wang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge