Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Mu is active.

Publication


Featured researches published by David Mu.


Nature | 2005

A microRNA polycistron as a potential human oncogene

Lin He; J. Michael Thomson; Michael T. Hemann; Eva Hernando-Monge; David Mu; Summer G. Goodson; Scott Powers; Carlos Cordon-Cardo; Scott W. Lowe; Gregory J. Hannon; Scott M. Hammond

To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17–92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17–92 locus are often substantially increased in these cancers. Enforced expression of the mir-17–92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17–92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17–92 cluster as a potential human oncogene.


Cell | 2006

Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach

Lars Zender; Mona S. Spector; Wen Xue; Peer Flemming; Carlos Cordon-Cardo; John Silke; Sheung Tat Fan; John M. Luk; Michael Wigler; Gregory J. Hannon; David Mu; Robert Lucito; Scott Powers; Scott W. Lowe

The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes.


Nature Structural & Molecular Biology | 2007

The gene encoding the splicing factor SF2/ASF is a proto-oncogene.

Rotem Karni; Elisa de Stanchina; Scott W. Lowe; Rahul Sinha; David Mu; Adrian R. Krainer

Alternative splicing modulates the expression of many oncogene and tumor-suppressor isoforms. We have tested whether some alternative splicing factors are involved in cancer. We found that the splicing factor SF2/ASF is upregulated in various human tumors, in part due to amplification of its gene, SFRS1. Moreover, slight overexpression of SF2/ASF is sufficient to transform immortal rodent fibroblasts, which form sarcomas in nude mice. We further show that SF2/ASF controls alternative splicing of the tumor suppressor BIN1 and the kinases MNK2 and S6K1. The resulting BIN1 isoforms lack tumor-suppressor activity; an isoform of MNK2 promotes MAP kinase–independent eIF4E phosphorylation; and an unusual oncogenic isoform of S6K1 recapitulates the transforming activity of SF2/ASF. Knockdown of either SF2/ASF or isoform-2 of S6K1 is sufficient to reverse transformation caused by the overexpression of SF2/ASF in vitro and in vivo. Thus, SF2/ASF can act as an oncoprotein and is a potential target for cancer therapy.


Biochemistry | 1996

Repair of cisplatin-DNA adducts by the mammalian excision nuclease

Deborah B. Zamble; David Mu; Joyce T. Reardon; and Aziz Sancar; Stephen J. Lippard

Nucleotide excision repair is one of the many cellular defense mechanisms against the toxic effects of cisplatin. An in vitro excision repair assay employing mammalian cell-free extracts was used to determine that the 1,2-d(ApG) intrastrand cross-link, a prevalent cisplatin-DNA adduct, is excised by the excinuclease from a site-specifically modified oligonucleotide 156 base pairs in length. Repair of the minor interstrand d(G)/d(G) cross-link was not detected by using this system. Proteins containing the high mobility group (HMG) domain DNA-binding motif, in particular, rat HMG1 and a murine testis-specific HMG-domain protein, specifically inhibit excision repair of the intrastrand 1,2-d(GpG) and -d(ApG) cross-links. This effect was also exhibited by a single HMG domain from HMG1. Similar inhibition of repair of a site-specific 1,2-d(GpG) intrastrand cross-link by an HMG-domain protein also occurred in a reconstituted system containing highly purified repair factors. These results indicate that HMG-domain proteins can block excision repair of the major cisplatin-DNA adducts and suggest that such an activity could contribute to the unique sensitivity of certain tumors to the drug. The reconstituted excinuclease was more efficient at excising the 1,3-d(GpTpG) intrastrand adduct than either the 1,2-d(GpG) or d(ApG) intrastrand adducts, in agreement with previous experiments using whole cell extracts [Huang, J. -C., Zamble, D. B., Reardon, J. T., Lippard, S. J., Sancar, A. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 10394-10398]. This result suggests that structural differences among the platinated DNA substrates, and not the presence of unidentified cellular factors, determine the relative excision repair rates of cisplatin-DNA intrastrand cross-links in the whole cell extracts.


Cancer Cell | 2003

Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene

David Mu; Liyun Chen; Xiping Zhang; Lei-Hoon See; Christina M Koch; Clifford Yen; James Jiayuan Tong; Lori Spiegel; Ken C. Q. Nguyen; Allyson Servoss; Yue Peng; Lin Pei; Jeffrey R. Marks; Scott W. Lowe; Timothy Hoey; Lily Yeh Jan; W. Richard McCombie; Michael Wigler; Scott Powers

Representational difference analysis (RDA) of human breast cancer was used to discover a novel amplicon located at chromosomal region 8q24.3. We examined a series of breast cancer samples harboring amplification of this region and determined that KCNK9 is the sole overexpressed gene within the amplification epicenter. KCNK9 encodes a potassium channel that is amplified from 3-fold to 10-fold in 10% of breast tumors and overexpressed from 5-fold to over 100-fold in 44% of breast tumors. Overexpression of KCNK9 in cell lines promotes tumor formation and confers resistance to both hypoxia and serum deprivation, suggesting that its amplification and overexpression plays a physiologically important role in human breast cancer.


Molecular and Cellular Biology | 1997

Recognition and Repair of Compound DNA Lesions (Base Damage and Mismatch) by Human Mismatch Repair and Excision Repair Systems

David Mu; Mihray Tursun; Derek R. Duckett; James T. Drummond; Paul Modrich; Andaziz Sancar

Nucleotide excision repair and the long-patch mismatch repair systems correct abnormal DNA structures arising from DNA damage and replication errors, respectively. DNA synthesis past a damaged base (translesion replication) often causes misincorporation at the lesion site. In addition, mismatches are hot spots for DNA damage because of increased susceptibility of unpaired bases to chemical modification. We call such a DNA lesion, that is, a base damage superimposed on a mismatch, a compound lesion. To learn about the processing of compound lesions by human cells, synthetic compound lesions containing UV photoproducts or cisplatin 1,2-d(GpG) intrastrand cross-link and mismatch were tested for binding to the human mismatch recognition complex hMutS alpha and for excision by the human excision nuclease. No functional overlap between excision repair and mismatch repair was observed. The presence of a thymine dimer or a cisplatin diadduct in the context of a G-T mismatch reduced the affinity of hMutS alpha for the mismatch. In contrast, the damaged bases in these compound lesions were excised three- to fourfold faster than simple lesions by the human excision nuclease, regardless of the presence of hMutS alpha in the reaction. These results provide a new perspective on how excision repair, a cellular defense system for maintaining genomic integrity, can fix mutations under certain circumstances.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer

Jude Kendall; Qing Liu; Amy Bakleh; Alexander Krasnitz; Ken C. Q. Nguyen; B. Lakshmi; William L. Gerald; Scott Powers; David Mu

We used high-resolution array analysis to discover a recurrent lung cancer amplicon located at 14q13.3. Low-level gain of this region was detected in 15% of lung cancer samples, and high-level amplification was detected in an additional 4% of samples. High-level focal amplification appears to be specific to lung cancers, because it was not detected in >500 samples of other tumor types. Mapping of the commonly amplified region revealed there are three genes in the core region, all of which encode transcription factors with either established lung developmental function (TTF1/NKX2-1, NKX2-8) or potential lung developmental function (PAX9). All three genes were overexpressed to varying degrees in amplified samples, although TTF1/NKX2-1 was not expressed in the squamous cancer subtype, consistent with previous reports. Remarkably, overexpression of any pairwise combination of these genes showed pronounced synergy in promoting the proliferation of immortalized human lung epithelial cells. Analysis of human lung cancer cell lines by both RNAi and ectopic overexpression further substantiates an oncogenic role for these transcription factors. These results, taken together with previous reports of oncogenic alterations of transcription factors involved in lung development (p63, CEBPA), suggest genetic alterations that directly interfere with transcriptional networks normally regulating lung development may be a more common feature of lung cancer than previously realized.


Journal of Biological Chemistry | 1997

Characterization of Reaction Intermediates of Human Excision Repair Nuclease

David Mu; Mitsuo Wakasugi; David S. Hsu; Aziz Sancar

Nucleotide excision repair in humans is a complex reaction involving 14 polypeptides in six repair factors for dual incisions on either sides of a DNA lesion. To identify the reaction intermediates that form by the human excision repair nuclease, we adopted three approaches: purification of functional DNA·protein complexes, permanganate footprinting, and the employment as substrate of presumptive DNA reaction intermediates containing unwound sequences 5′ to, 3′ to, or encompassing the DNA lesion. The first detectable reaction intermediate was formed by substrate binding of XPA, RPA, XPC·HHR23B plus TFIIH (preincision complex 1, PIC1). In this complex the DNA was unwound on either side of the lesion by no more than 10 bases. Independent of the XPG nuclease function, the XPG protein stabilized this complex, forming a long lived preincision complex 2 (PIC2). The XPF·ERCC1 complex bound to PIC2, forming PIC3, which led to dual incisions and the release of the excised oligomer. With partially unwound DNAs, thymine cyclobutane dimer was excised at a fast rate independent of XPC·HHR23B, indicating that a major function of this protein is to stabilize the unwound DNA or to aid lesion unwinding in preincision complexes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function

Lin Pei; Ofer Wiser; Anthony J. Slavin; David Mu; Scott Powers; Lily Yeh Jan; Timothy Hoey

TASK3 gene (Kcnk9) is amplified and overexpressed in several types of human carcinomas. In this report, we demonstrate that a point mutation (G95E) within the consensus K+ filter of TASK3 not only abolished TASK3 potassium channel activity but also abrogated its oncogenic functions, including proliferation in low serum, resistance to apoptosis, and promotion of tumor growth. Furthermore, we provide evidence that TASK3G95E is a dominant-negative mutation, because coexpression of the wild-type and the mutant TASK3 resulted in inhibition of K+ current of wild-type TASK3 and its tumorigenicity in nude mice. These results establish a direct link between the potassium channel activity of TASK3 and its oncogenic functions and imply that blockers for this potassium channel may have therapeutic potential for the treatment of cancers.


Journal of Biological Chemistry | 1996

Overproduction, Purification, and Characterization of the XPC Subunit of the Human DNA Repair Excision Nuclease

Joyce T. Reardon; David Mu; Aziz Sancar

Xeroderma pigmentosum complementation group C gene (XPC) encodes a protein of 125 kDa which is present in a tight complex with a 58-kDa protein encoded by the human homolog of the yeast RAD23 gene, HHR23B (Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P. J., Bootsma, D., Hoeijmakers, J. H. J., and Hanaoka, F. (1994) EMBO J. 13, 1831-1843). The XPC-HHR23B complex is required for excision of thymine dimers from DNA in a human excision nuclease system reconstituted from purified proteins. In order to understand the role of the XPC-HHR23B complex in excision repair, we have overexpressed each subunit alone and the heterodimer in heterologous systems, purified them, and characterized their biochemical properties. We find that both XPC and the heterodimer bind DNA with high affinity and UV-damaged DNA with slightly higher preference. Surprisingly, we find that the XPC subunit alone is sufficient for reconstitution of the human excision nuclease and that the HHR23B subunit has no detectable effect on the excision activity of the reconstituted system.

Collaboration


Dive into the David Mu's collaboration.

Top Co-Authors

Avatar

Aziz Sancar

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Scott W. Lowe

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Qi

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Joyce T. Reardon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn J. Rice

Penn State Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge