David N. Fisher
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David N. Fisher.
Behavioral Ecology | 2015
David N. Fisher; Morgan David; Tom Tregenza; Rolando Rodríguez-Muñoz
Lay Summary Wild crickets show consistent patterns of behavior over their adult lifetimes and as they get older they become increasingly predictable. We tagged crickets and then periodically recaptured them and measured their behavior in the lab. This revealed that rather than variation in how age affects behavior, there were consistent patterns across the whole population. We do not have a situation where some crickets live fast and die young while others take it easy and slow.
Proceedings of the Royal Society B: Biological Sciences | 2015
David N. Fisher; Adèle James; Rolando Rodríguez-Muñoz; Tom Tregenza
Examining the relevance of ‘animal personality’ involves linking consistent among- and within-individual behavioural variation to fitness in the wild. Studies aiming to do this typically assay personality in captivity and rely on the assumption that measures of traits in the laboratory reflect their expression in nature. We examined this rarely tested assumption by comparing laboratory and field measurements of the behaviour of wild field crickets (Gryllus campestris) by continuously monitoring individual behaviour in nature, and repeatedly capturing the same individuals and measuring their behaviour in captivity. We focused on three traits that are frequently examined in personality studies: shyness, activity and exploration. All of them showed repeatability in the laboratory. Laboratory activity and exploration predicted the expression of their equivalent behaviours in the wild, but shyness did not. Traits in the wild were predictably influenced by environmental factors such as temperature and sunlight, but only activity showed appreciable within-individual repeatability. This suggests that some behaviours typically studied as personality traits can be accurately assayed in captivity, but the expression of others may be highly context-specific. Our results highlight the importance of validating the relevance of laboratory behavioural assays to analogous traits measured in the wild.
BMC Evolutionary Biology | 2013
David N. Fisher; Rowan J Doff; Tom A. R. Price
BackgroundThe rate of female remating can have important impacts on a species, from affecting conflict and cooperation within families, to population viability and gene flow. However, determining the level of polyandry in a species can be difficult, with information on the mating system of many species being based on a single experiment, or completely absent. Here we investigate the mating system of the fruit fly Drosophila subobscura. Reports from England, Spain and Canada suggest D. subobscura is entirely monandrous, with no females remating. However, work in Greece suggests that 23% of females remate. We examine the willingness of female D. subobscura to remate in the laboratory in a range of conditions, using flies from both Greece and England. We make a distinction between pseudopolyandry, where a female remates after an ineffective first mating that is incapable of fertilising her eggs, and true polyandry, where a female remates even though she has received suitable sperm from a previous mating.ResultsWe find a low rate of true polyandry by females (4%), with no difference between populations. The rate of true polyandry is affected by temperature, but not starvation. Pseudopolyandry is three times as common as true polyandry, and most females showing pseudopolyandry mated at their first opportunity after their first failed mating. However, despite the lack of differences in polyandry between the populations, we do find differences in the way males respond to exposure to other males prior to mating. In line with previous work, English flies responded to one or more rivals by increasing their copulation duration, a response previously thought to be driven by sperm competition. Greek males only show increased copulation duration when exposed to four or more rival males. This suggests that the response to rivals in D. subobscura is not related to sperm competition, because sperm competition is rare, and there is no correlation of response to rivals and mating system across the populations.ConclusionsThese results illustrate the difficulties in determining the mating system of a species, even one that is well known and an excellent laboratory species, with results being highly dependent on the conditions used to assay the behaviour, and the population used.
Behavioral Ecology | 2016
David N. Fisher; Rolando Rodríguez-Muñoz; Tom Tregenza
Lay Summary In many animals, males compete for fertilizations both before and after mating. But do males specialize in 1 type of competition? And do physical fights between males lead to less competition between their ejaculates within females? We studied competitions between wild crickets by building networks of interactions. We found that males that had more fights were more likely to meet in sperm competition, suggesting that evolution will not favor specialists in one of the 2 types of competition. Twitter: @DFofFreedom
Journal of Animal Ecology | 2017
David N. Fisher; Amiyaal Ilany; Matthew J. Silk; Tom Tregenza
Summary Animals are embedded in dynamically changing networks of relationships with conspecifics. These dynamic networks are fundamental aspects of their environment, creating selection on behaviours and other traits. However, most social network‐based approaches in ecology are constrained to considering networks as static, despite several calls for such analyses to become more dynamic. There are a number of statistical analyses developed in the social sciences that are increasingly being applied to animal networks, of which stochastic actor‐oriented models (SAOMs) are a principal example. SAOMs are a class of individual‐based models designed to model transitions in networks between discrete time points, as influenced by network structure and covariates. It is not clear, however, how useful such techniques are to ecologists, and whether they are suited to animal social networks. We review the recent applications of SAOMs to animal networks, outlining findings and assessing the strengths and weaknesses of SAOMs when applied to animal rather than human networks. We go on to highlight the types of ecological and evolutionary processes that SAOMs can be used to study. SAOMs can include effects and covariates for individuals, dyads and populations, which can be constant or variable. This allows for the examination of a wide range of questions of interest to ecologists. However, high‐resolution data are required, meaning SAOMs will not be useable in all study systems. It remains unclear how robust SAOMs are to missing data and uncertainty around social relationships. Ultimately, we encourage the careful application of SAOMs in appropriate systems, with dynamic network analyses likely to prove highly informative. Researchers can then extend the basic method to tackle a range of existing questions in ecology and explore novel lines of questioning.
Evolution | 2017
David N. Fisher; Stan Boutin; Ben Dantzer; Murray M. Humphries; Jeffrey E. Lane; Andrew G. McAdam
Individuals often interact more closely with some members of the population (e.g., offspring, siblings, or group members) than they do with other individuals. This structuring of interactions can lead to multilevel natural selection, where traits expressed at the group‐level influence fitness alongside individual‐level traits. Such multilevel selection can alter evolutionary trajectories, yet is rarely quantified in the wild, especially for species that do not interact in clearly demarcated groups. We quantified multilevel natural selection on two traits, postnatal growth rate and birth date, in a population of North American red squirrels (Tamiasciurus hudsonicus). The strongest level of selection was typically within‐acoustic social neighborhoods (within 130 m of the nest), where growing faster and being born earlier than nearby litters was key, while selection on growth rate was also apparent both within‐litters and within‐study areas. Higher population densities increased the strength of selection for earlier breeding, but did not influence selection on growth rates. Females experienced especially strong selection on growth rate at the within‐litter level, possibly linked to the biased bequeathal of the maternal territory to daughters. Our results demonstrate the importance of considering multilevel and sex‐specific selection in wild species, including those that are territorial and sexually monomorphic.
BMC Evolutionary Biology | 2016
David N. Fisher; Rolando Rodríguez-Muñoz; Tom Tregenza
BackgroundA central part of an animals environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris.ResultsThrough the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years.ConclusionsOur results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Animal Behaviour | 2017
Matthew J. Silk; David N. Fisher
The social environment is a pervasive influence on the ecological and evolutionary dynamics of animal populations. Recently, social network analysis has provided an increasingly powerful and diverse toolset to enable animal behaviour researchers to quantify the social environment of animals and the impact that it has on ecological and evolutionary processes. However, there is considerable scope for improving these methods further. We outline an approach specifically designed to model the formation of network links, exponential random graph models (ERGMs), which have great potential for modelling animal social structure. ERGMs are generative models that treat network topology as a response variable. This makes them ideal for answering questions related directly to how and why social associations or interactions occur, from the modelling of population level transmission, through within-group behavioural dynamics to social evolutionary processes. We discuss how ERGMs have been used to study animal behaviour previously, and how recent developments in the ERGM framework can increase the scope of their use further. We also highlight the strengths and weaknesses of this approach relative to more conventional methods, and provide some guidance on the situations and research areas in which they can be used appropriately. ERGMs have the potential to be an important part of an animal behaviour researchers toolkit and fully integrating them into the field should enhance our ability to understand what shapes animal social interactions, and identify the underlying processes that lead to the social structure of animal populations.
Frontiers in Ecology and Evolution | 2015
Frances Tyler; David N. Fisher; Patrizia d'Ettorre; Rolando Rodríguez-Muñoz; Tom Tregenza
Cuticular hydrocarbons (CHCs) are important in mate choice in many insects, and may be used for species recognition if CHC profiles differ between potentially hybridizing species. In the sibling field cricket species Gryllus campestris and G. bimaculatus, females of G. bimaculatus are tolerant towards G. campestris males and can mate with them. However, G. campestris females are highly aggressive towards heterospecific G. bimaculatus males, and matings between them never happen. We examined whether cricket females might use CHCs to determine the species identity of their potential mates. We firstly analyzed the cuticular chemical profile by gas chromatography and mass spectrometry to assess the potential of CHCs to be used for species recognition in these crickets. We then manipulated females’ ability to detect chemical cues by carrying out chemical ablation of the antennae, and measured changes in aggressive responses to heterospecific males. We show that there are significant interspecies differences in CHC expression for both sexes, and that females with chemically ablated antennae reduce aggressive behavior towards heterospecific males. Our findings support the prediction that cuticular semiochemicals can play a key role in reproductive isolation between closely related insect species.
Archive | 2017
David N. Fisher; Matthew J. Silk; Daniel W. Franks
Networks describe a range of social, biological and technical phenomena. An important property of a network is its degree correlation or assortativity, describing how nodes in the network associate based on their number of connections. Social networks are typically thought to be distinct from other networks in being assortative (possessing positive degree correlations); well-connected individuals associate with other well-connected individuals, and poorly connected individuals associate with each other. We review the evidence for this in the literature and find that, while social networks are more assortative than non-social networks, only when they are built using group-based methods do they tend to be positively assortative. Non-social networks tend to be disassortative. We go on to show that connecting individuals due to shared membership of a group, a commonly used method, biases towards assortativity unless a large enough number of censuses of the network are taken. We present a number of solutions to overcoming this bias by drawing on advances in sociological and biological fields. Adoption of these methods across all fields can greatly enhance our understanding of social networks and networks in general.