David N. LeBard
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David N. LeBard.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Grace Brannigan; David N. LeBard; Jérôme Hénin; Roderic G. Eckenhoff; Michael L. Klein
An extensive search for isoflurane binding sites in the nicotinic acetylcholine receptor (nAChR) and the proton gated ion channel from Gloebacter violaceus (GLIC) has been carried out based on molecular dynamics (MD) simulations in fully hydrated lipid membrane environments. Isoflurane introduced into the aqueous phase readily partitions into the lipid membrane and the membrane-bound protein. Specifically, isoflurane binds persistently to three classes of sites in the nAChR transmembrane domain: (i) An isoflurane dimer occludes the pore, contacting residues identified by previous mutagenesis studies; analogous behavior is observed in GLIC. (ii) Several nAChR subunit interfaces are also occupied, in a site suggested by photoaffinity labeling and thought to positively modulate the receptor; these sites are not occupied in GLIC. (iii) Isoflurane binds to the subunit centers of both nAChR α chains and one of the GLIC chains, in a site that has had little experimental targeting. Interpreted in the context of existing structural and physiological data, the present MD results support a multisite model for the mechanism of receptor-channel modulation by anesthetics.
Soft Matter | 2012
David N. LeBard; Benjamin G. Levine; Philipp Mertmann; Stephen A. Barr; Arben Jusufi; Samantha Sanders; Michael L. Klein; Athanassios Z. Panagiotopoulos
Due to the relatively long time scales inherent to ionic surfactant self-assembly (>μs), an aggressive computational approach is needed to obtain converged data on micellar solutions. This work presents a study of micellization using a coarse-grained (CG) model of aqueous ionic surfactants in replicated molecular dynamics (MD) simulations run on graphics processing unit hardware. The performance of our implementation of the CG model with electrostatics into the HOOMD-Blue GPU-accelerated MD software package is comparable to that of a modest sized cluster running a highly optimized parallel CPU code. From 0.36 ms of cumulative trajectory data, we are able to predict equilibrium thermodynamic and morphological properties of ionic surfactant micellar solutions. Estimating the critical micelle concentrations (CMC) from the free monomer (ρ1) and premicellar concentrations obtained from simulations of sodium hexyl sulfate (S6S, CMC of 460 ± 6 mM) at high (1 M) concentration, a value in good agreement with experimental results is obtained; however, the same method applied to simulations of sodium nonyl sulfate (S9S, ρ1 of 2.4 ± 0.01 mM) and sodium dodecyl sulfate (SDS, ρ1 of 0.02 ± 0.01 mM) at the same total concentration systematically underestimates the CMCs. An alternative method for calculating the CMC is presented, where the free monomer concentration computed from high concentration CG-MD data is used as the input to a simple theoretical model which can be used to extrapolate to a more accurate prediction of the CMC. Better agreement between the empirical and predicted CMC is obtained from this theory for S9S (28.7 ± 0.3 mM) and SDS (3.32 ± 0.04 mM), though the CMC for S6S is slightly underestimated (304 ± 3 mM). We also present statistically converged morphological data, including aggregation number distributions and the principal components of the gyration tensor. This data suggest a transition from spherical micelles to rod-like at a specific aggregation number, which increases with increasing hydrocarbon length.
Journal of Chemical Theory and Computation | 2011
Benjamin G. Levine; David N. LeBard; Russell DeVane; Wataru Shinoda; Axel Kohlmeyer; Michael L. Klein
The computational design of advanced materials based on surfactant self-assembly without ever stepping foot in the laboratory is an important goal, but there are significant barriers to this approach, because of the limited spatial and temporal scales accessible by computer simulations. In this paper, we report our work to bridge the gap between laboratory and computational time scales by implementing the coarse-grained (CG) force field previously reported by Shinoda et al. [Shinoda, W.; DeVane, R.; Klein, M. L. Mol. Simul. 2007, 33, 27-36] into the HOOMD-Blue graphical processing unit (GPU)-accelerated molecular dynamics (MD) software package previously reported by Anderson et al. [Anderson, J. A.; Lorenz, C. D.; Travesset, A. J. Comput. Phys. 2008, 227, 5342-5359]. For a system of 25 750 particles, this implementation provides performance on a single GPU, which is superior to that of a widely used parallel MD simulation code running on an optimally sized CPU-based cluster. Using our GPU setup, we have collected 0.6 ms of MD trajectory data for aqueous solutions of 7 different nonionic polyethylene glycol (PEG) surfactants, with most of the systems studied representing ∼1 000 000 atoms. From this data, we calculated various properties as a function of the length of the hydrophobic tails and PEG head groups. Specifically, we determined critical micelle concentrations (CMCs), which are in good agreement with experimental data, and characterized the size and shape of micelles. However, even with the microsecond trajectories employed in this study, we observed that the micelles composed of relatively hydrophobic surfactants are continuing to grow at the end of our simulations. This suggests that the final micelle size distributions of these systems are strongly dependent on initial conditions and that either longer simulations or advanced sampling techniques are needed to properly sample their equilibrium distributions. Nonetheless, the combination of coarse-grained modeling and GPU acceleration marks a significant step toward the computational prediction of the thermodynamic properties of slowly evolving surfactant systems.
PLOS Computational Biology | 2013
S.G. Raju; Annika F. Barber; David N. LeBard; Michael L. Klein; Vincenzo Carnevale
Despite the clinical ubiquity of anesthesia, the molecular basis of anesthetic action is poorly understood. Amongst the many molecular targets proposed to contribute to anesthetic effects, the voltage gated sodium channels (VGSCs) should also be considered relevant, as they have been shown to be sensitive to all general anesthetics tested thus far. However, binding sites for VGSCs have not been identified. Moreover, the mechanism of inhibition is still largely unknown. The recently reported atomic structures of several members of the bacterial VGSC family offer the opportunity to shed light on the mechanism of action of anesthetics on these important ion channels. To this end, we have performed a molecular dynamics “flooding” simulation on a membrane-bound structural model of the archetypal bacterial VGSC, NaChBac in a closed pore conformation. This computation allowed us to identify binding sites and access pathways for the commonly used volatile general anesthetic, isoflurane. Three sites have been characterized with binding affinities in a physiologically relevant range. Interestingly, one of the most favorable sites is in the pore of the channel, suggesting that the binding sites of local and general anesthetics may overlap. Surprisingly, even though the activation gate of the channel is closed, and therefore the pore and the aqueous compartment at the intracellular side are disconnected, we observe binding of isoflurane in the central cavity. Several sampled association and dissociation events in the central cavity provide consistent support to the hypothesis that the “fenestrations” present in the membrane-embedded region of the channel act as the long-hypothesized hydrophobic drug access pathway.
PLOS Computational Biology | 2012
David N. LeBard; Jérôme Hénin; Roderic G. Eckenhoff; Michael L. Klein; Grace Brannigan
Although general anesthetics are known to modulate the activity of ligand-gated ion channels in the Cys-loop superfamily, there is at present neither consensus on the underlying mechanisms, nor predictive models of this modulation. Viable models need to offer quantitative assessment of the relative importance of several identified anesthetic binding sites. However, to date, precise affinity data for individual sites has been challenging to obtain by biophysical means. Here, the likely role of pore block inhibition by the general anesthetics isoflurane and propofol of the prokaryotic pentameric channel GLIC is investigated by molecular simulations. Microscopic affinities are calculated for both single and double occupancy binding of isoflurane and propofol to the GLIC pore. Computations are carried out for an open-pore conformation in which the pore is restrained to crystallographic radius, and a closed-pore conformation that results from unrestrained molecular dynamics equilibration of the structure. The GLIC pore is predicted to be blocked at the micromolar concentrations for which inhibition by isofluorane and propofol is observed experimentally. Calculated affinities suggest that pore block by propofol occurs at signifcantly lower concentrations than those for which inhibition is observed: we argue that this discrepancy may result from binding of propofol to an allosteric site recently identified by X-ray crystallography, which may cause a competing gain-of-function effect. Affinities of isoflurane and propofol to the allosteric site are also calculated, and shown to be 3 mM for isoflurane and for propofol; both anesthetics have a lower affinity for the allosteric site than for the unoccupied pore.
Journal of Physical Chemistry B | 2010
David N. LeBard; Dmitry V. Matyushov
Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.
Journal of Physical Chemistry B | 2008
David N. LeBard; Vitaliy Kapko; Dmitry V. Matyushov
We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.
Journal of Physical Chemistry B | 2008
David N. LeBard; Dmitry V. Matyushov
We report the results of molecular dynamics simulations of electron-transfer activation parameters of plastocyanin metalloprotein involved as an electron carrier in natural photosynthesis. We have discovered that slow, non-ergodic conformational fluctuations of the protein, coupled to hydrating water, result in a very broad distribution of donor-acceptor energy gaps far exceeding those observed for commonly studied inorganic and organic donor-acceptor complexes. The Stokes shift is not affected by these fluctuations and can be calculated from solvation models in terms of the linear response of the solvent dipolar polarization. The non-ergodic character of large-amplitude protein/water mobility breaks the strong link between the Stokes shift and the reorganization energy characteristic of equilibrium (ergodic) theories of electron transfer. This mechanism might be responsible for fast electronic transitions in natural electron-transfer proteins characterized by low reaction free energy.
Journal of Physical Chemistry B | 2009
David N. LeBard; Dmitry V. Matyushov
We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.
Journal of Physical Chemistry B | 2012
Arben Jusufi; David N. LeBard; Benjamin G. Levine; Michael L. Klein
A hydrophobic theory is combined with a Debye-Hückel approximation to calculate surfactant micellization properties such as the critical micelle concentration (cmc) and concentration effects. The predictive power of the theory is validated by comparison with experimental data of various ionic surfactant types in presence of salt. The theory is also used to describe micellar properties of surfactant models developed for molecular simulations for which cmc computations become infeasible. The theory allows such computations and helps to evaluate the quality of models used in simulations.