David N. Louis
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David N. Louis.
Acta Neuropathologica | 2007
David N. Louis; Hiroko Ohgaki; Otmar D. Wiestler; Webster K. Cavenee; Peter C. Burger; Anne Jouvet; Bernd W. Scheithauer; Paul Kleihues
The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.
Nature | 2007
Christopher Greenman; Philip Stephens; Raffaella Smith; Gillian L. Dalgliesh; Chris Hunter; Graham R. Bignell; Helen Davies; Jon Teague; Adam Butler; Claire Stevens; Sarah Edkins; Sarah O’Meara; Imre Vastrik; Esther Schmidt; Tim Avis; Syd Barthorpe; Gurpreet Bhamra; Gemma Buck; Bhudipa Choudhury; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kris Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jon Hinton; Andy Jenkinson; David Jones
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be ‘passengers’ that do not contribute to oncogenesis. However, there was evidence for ‘driver’ mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
Nature | 2002
Scott L. Pomeroy; Pablo Tamayo; Michelle Gaasenbeek; Lisa Marie Sturla; Michael Angelo; Margaret McLaughlin; John Kim; Liliana Goumnerova; Peter McL. Black; Ching Lau; Jeffrey C. Allen; David Zagzag; James M. Olson; Tom Curran; Jaclyn A. Biegel; Tomaso Poggio; Shayan Mukherjee; Ryan Rifkin; Gustavo Stolovitzky; David N. Louis; Jill P. Mesirov; Eric S. Lander; Todd R. Golub
Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients’ response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.
Acta Neuropathologica | 2016
David N. Louis; Arie Perry; Guido Reifenberger; Andreas von Deimling; Dominique Figarella-Branger; Webster K. Cavenee; Hiroko Ohgaki; Otmar D. Wiestler; Paul Kleihues; David W. Ellison
The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M–mutant; RELA fusion–positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma—a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
Science | 2014
Anoop P. Patel; Itay Tirosh; John J. Trombetta; Alex K. Shalek; Shawn M. Gillespie; Hiroaki Wakimoto; Daniel P. Cahill; Brian V. Nahed; William T. Curry; Robert L. Martuza; David N. Louis; Orit Rozenblatt-Rosen; Mario L. Suvà; Aviv Regev; Bradley E. Bernstein
Cancer at single-cell resolution Single-cell sequencing can illuminate the genetic properties of brain cancers and reveal heterogeneity within a tumor. Patel et al. examined the genome sequence of single cells isolated from brain glioblastomas. The findings revealed shared chromosomal changes but also extensive transcription variation, including genes related to signaling, which represent potential therapeutic targets. The authors suggest that the variation in tumor cells reflects neural development and that such variation among cancer cells may prove to have clinical significance. Science, this issue p. 1396 Screening individual cancer cells within a brain tumor may help to guide treatment and predict prognosis. Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.
American Journal of Pathology | 1998
Gunnlaugur P. Nielsen; Karen L. Burns; Andrew E. Rosenberg; David N. Louis
Osteosarcomas often suffer mutations of the RB (retinoblastoma) gene, with resultant inactivation of the pRb protein. pRb is one component in a cell-cycle control pathway that includes the p16 (encoded by the CDKN2A gene) and cyclin-dependent kinase 4 (cdk4, encoded by the CDK4 gene) proteins. We therefore sought to determine whether the CDKN2A and CDK4 genes were altered in those osteosarcomas that lacked RB inactivation. Twenty-one osteosarcomas (2 low-grade and 19 high-grade) were evaluated for homozygous deletion of the CDKN2A gene, CDK4 amplification, and allelic loss of the RB gene, as well as for expression of p16 and pRb proteins. Five high-grade osteosarcomas showed loss of p16 expression; four of these had homozygous CDKN2A deletions, and the fifth had a probable deletion obscured by numerous nonneoplastic, p16-immunopositive multinucleated giant cells. Thus, p16 immunohistochemistry may provide a sensitive means for assessing CDKN2A status. Twelve tumors (including the two low-grade osteosarcomas) were immunopositive for pRb, and nine tumors were immunonegative for pRb. Of the five cases with CDKN2A/p16 alterations, none had allelic loss of the RB gene and all expressed pRb, suggesting that each of these tumors had an intact RB gene. None of the tumors showed CDK4 amplification. No alterations were detected in the two low-grade osteosarcomas. This study suggests that CDKN2A is a tumor suppressor inactivated in osteosarcomas that lack RB mutations and that the p16-pRb cell-cycle control pathway is deregulated in a large number of high-grade osteosarcomas.
Molecular and Cellular Biology | 2000
Mark A. Dickson; William C. Hahn; Yasushi Ino; Vincent Ronfard; Jenny Y. Wu; Robert A. Weinberg; David N. Louis; Frederick P. Li; James G. Rheinwald
ABSTRACT Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems.
Cancer Cell | 2002
Robert M. Bachoo; Elizabeth A. Maher; Keith L. Ligon; Norman E. Sharpless; Suzanne S. Chan; Mingjian James You; Yi Tang; Jessica DeFrances; Elizabeth H. Stover; Ralph Weissleder; David H. Rowitch; David N. Louis; Ronald A. DePinho
Ink4a/Arf inactivation and epidermal growth factor receptor (EGFR) activation are signature lesions in high-grade gliomas. How these mutations mediate the biological features of these tumors is poorly understood. Here, we demonstrate that combined loss of p16(INK4a) and p19(ARF), but not of p53, p16(INK4a), or p19(ARF), enables astrocyte dedifferentiation in response to EGFR activation. Moreover, transduction of Ink4a/Arf(-/-) neural stem cells (NSCs) or astrocytes with constitutively active EGFR induces a common high-grade glioma phenotype. These findings identify NSCs and astrocytes as equally permissive compartments for gliomagenesis and provide evidence that p16(INK4a) and p19(ARF) synergize to maintain terminal astrocyte differentiation. These data support the view that dysregulation of specific genetic pathways, rather than cell-of-origin, dictates the emergence and phenotype of high-grade gliomas.
Science Translational Medicine | 2013
Emre Özkumur; Ajay M. Shah; Jordan C. Ciciliano; Benjamin L. Emmink; David T. Miyamoto; Elena F. Brachtel; Min Yu; Pin-i Chen; Bailey Morgan; Julie Trautwein; Anya M. Kimura; Sudarshana Sengupta; Shannon L. Stott; Nezihi Murat Karabacak; Tom Barber; John Walsh; Kyle C. Smith; Philipp S. Spuhler; James P. Sullivan; Richard J. Lee; David T. Ting; Xi Luo; Alice T. Shaw; Aditya Bardia; Lecia V. Sequist; David N. Louis; Shyamala Maheswaran; Ravi Kapur; Daniel A. Haber; Mehmet Toner
A multistage microfluidic chip is capable of sorting rare EpCAM+ and EpCAM− CTCs from cancer patients’ whole blood. Positive and Negative Outcomes Usually people want the good news first, to help cope with the bad news that inevitably follows. However, patients will soon desire both the positive and the negative outcomes together, according to the latest study by Ozkumur and colleagues. These authors have developed a multistage microfluidic device that is capable of sorting rare circulating tumor cells (CTCs) that are either positive or negative for the surface antigen epithelial cell adhesion molecule (EpCAM). EpCAM+ cells found in the bloodstream have long defined the typical CTC. Many sorting technologies have been developed to enumerate EpCAM+ CTCs in cancer patient’s blood; however, these cells are not always detectable in cancers with low EpCAM expression, like triple-negative breast cancer or melanoma. Ozkumur et al. engineered an automated platform, called the “CTC-iChip,” that captured both EpCAM+ and EpCAM− cancer cells in clinical samples using a series of debulking, inertial focusing, and magnetic separation steps. The sorted CTCs could then be interrogated using standard clinical protocols, such as immunocytochemistry. The authors tested the “positive mode” of their device using whole blood from patients with prostate, lung, breast, pancreatic, and colorectal cancers. After successfully separating out the EpCAM+ CTCs, they confirmed that the cells were viable and had high-quality RNA for molecular analysis, in one example, detecting the EML4-ALK gene fusion in lung cancer. Using the “negative mode” of their device, the authors were able to capture EpCAM− CTCs from patients with metastatic breast cancer, pancreatic cancer, and melanoma. The isolated CTCs showed similar morphology when compared with primary tumor tissue from these patients, suggesting that the microfluidic device can be used for clinical diagnoses—delivering both positive and negative news at once. Ozkumur et al. also demonstrated that CTCs isolated using the iChip could be analyzed on the single-cell level. One such demonstration with 15 CTCs from a prostate cancer patient reveals marked heterogeneity in the expression of mesenchymal and stem cell markers as well as typical prostate cancer–related antigens. The CTC-iChip can therefore process large volumes of patient blood to obtain not just EpCAM+ CTCs but also the EpCAM− ones, thus giving a broader picture of an individual’s cancer status and also allowing the device to be used for more cancer types. With the ability to further analyze the molecular characteristics of CTCs, this CTC-iChip could be a promising addition to current diagnostic tools used in the clinic. Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing–enhanced microfluidic CTC capture platform, termed “CTC-iChip,” that is capable of sorting rare CTCs from whole blood at 107 cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.
Molecular Cell | 1998
Michael Ohh; Robert L. Yauch; Kim M. Lonergan; Jean M. Whaley; Anat Stemmer-Rachamimov; David N. Louis; Brian J. Gavin; Nikolai Kley; William G. Kaelin; Othon Iliopoulos
Fibronectin coimmunoprecipitated with wild-type von Hippel-Lindau protein (pVHL) but not tumor-derived pVHL mutants. Immunofluorescence and biochemical fractionation experiments showed that fibronectin colocalized with a fraction of pVHL associated with the endoplasmic reticulum, and cold competition experiments suggested that complexes between fibronectin and pVHL exist in intact cells. Assembly of an extracellular fibronectin matrix by VHL-/- renal carcinoma cells, as determined by immunofluorescence and ELISA assays, was grossly defective compared with VHL+/+ renal carcinoma cells. Reintroduction of wildtype, but not mutant, pVHL into VHL-/- renal carcinoma cells partially corrected this defect. Finally, extracellular fibronectin matrix assembly by VHL-/- mouse embryos and mouse embryo fibroblasts (MEFs), unlike their VHL+/+ counterparts, was grossly impaired. These data support a direct role of pVHL in fibronectin matrix assembly.