Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David N. Whiteman is active.

Publication


Featured researches published by David N. Whiteman.


Applied Optics | 1992

Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere

David N. Whiteman; S. H. Melfi; R. A. Ferrare

A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context.


Applied Optics | 2002

Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding

Igor Veselovskii; Alexei Kolgotin; Vadim Griaznov; Detlef Müller; Ulla Wandinger; David N. Whiteman

We present an inversion algorithm for the retrieval of particle size distribution parameters, i.e., mean (effective) radius, number, surface area, and volume concentration, and complex refractive index from multiwavelength lidar data. In contrast to the classical Tikhonov method, which accepts only that solution for which the discrepancy reaches its global minimum, in our algorithm we perform the averaging of solutions in the vicinity of this minimum. This averaging stabilizes the underlying ill-posed inverse problem, particularly with respect to the retrieval of number concentration. Results show that, for typical tropospheric particles and 10% error in the optical data, the mean radius could be retrieved to better than 20% from a lidar on the basis of a Nd:YAG laser, which provides a combination of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The accuracy is improved if the lidar is also equipped with a hydrogen Raman shifter. In this case two additional backscatter coefficients at 416 and 683 nm are available. The combination of two extinction coefficients and five backscatter coefficients then allows one to retrieve not only averaged aerosol parameters but also the size distribution function. There was acceptable agreement between physical particle properties obtained from the evaluation of multiwavelength lidar data taken during the Lindenberg Aerosol Characterization Experiment in 1998 (LACE 98) and in situ data, which were taken aboard aircraft.


Applied Optics | 2004

Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

Igor Veselovskii; Alexei Kolgotin; Vadim Griaznov; Detlef Müller; Kathleen Franke; David N. Whiteman

We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonovs inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.


Journal of Geophysical Research | 1998

Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons

R. A. Ferrare; S. H. Melfi; David N. Whiteman; Keith Evans; R. Leifer

This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.015 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0.1 and 5 km are found to be about 10–40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.


Applied Optics | 2003

Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations

David N. Whiteman

The essential information required for the analysis of Raman lidar water vapor and aerosol data acquired by use of a single laser wavelength is compiled here and in a companion paper [Appl. Opt. 42, 2593 (2003)]. Various details concerning the evaluation of the lidar equations when Raman scattering is measured are covered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. The full temperature dependence of the Rayleigh-Mie and Raman lidar equations are evaluated by use of a new form of the lidar equation where all the temperature dependence is carried in a single term. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature-dependent effect can reach 10% or more for narrowband Raman water-vapor measurements. Also, the calculation of atmospheric transmission, including the effects of depolarization, is examined carefully. Various formulations of Rayleigh cross-section determination commonly used in the lidar field are compared and reveal differences of as much as 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction with the Raman lidar technique is considered, as are several photon pulse pileup-correction techniques.


Journal of Atmospheric and Oceanic Technology | 1995

A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes

Richard A. Ferrare; S. H. Melfi; David N. Whiteman; Keith Evans; F. J. Schmidlin; D. O'c. Starr

Abstract This paper examines the calibration characteristics of the NASA/GSFC Raman water vapor lidar during three field experiments that occurred between 1991 and 1993. The lidar water vapor profiles are calibrated using relative humidity profiles measured by AIR and Vaisala radiosondes. The lidar calibration computed using the AIR radiosonde, which uses a carbon hygristor to measure relative humidity, was 3%–5% higher than that computed using the Vaisala radiosonde, which uses a thin film capacitive element. These systematic differences were obtained for relative humidities above 30% and so cannot be explained by the known poor low relative humidity measurements associated with the carbon hygristor. The lidar calibration coefficient was found to vary by less than 1% over this period when determined using the Vaisala humidity data and by less than 5% when using the AIR humidity data. The differences between the lidar relative humidity profiles and those measured by these radiosondes are also examined. Th...


Journal of Geophysical Research | 1999

Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

David N. Whiteman; S. Harvey Melfi

A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.


Journal of Applied Meteorology | 1989

Observation of Atmospheric Fronts Using Raman Lidar Moisture Measurements

S. H. Melfi; David N. Whiteman; R. Ferrare

Abstract This paper presents the results of a field program using a ground-based Raman lidar system to observe changes in moisture profiles as a cold and a warm front passed over the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The lidar operating only during darkness is capable of providing continuous high vertical resolution profiles of water vapor mixing ratio and aerosol scattering ratio from near the surface to about 7 km altitude. The lidar data acquired on three consecutive nights from shortly after sunset to shortly before sunrise, along with upper air data from specially launched rawinsondes, have provided a unique visualization of the detailed structure of the two fronts.


Monthly Weather Review | 1991

Structure of an Internal Bore and Dissipating Gravity Current as Revealed by Raman Lidar

Steven E. Koch; Paul B. Dorian; R. Ferrare; S. H. Melfi; William C. Skillman; David N. Whiteman

Abstract Detailed moisture observations from a ground-based Raman lidar and special radiosonde data of two disturbances associated with a dissipating gust front are presented. A synthesis of the lidar data with conventional meteorological data, in conjunction with theoretical calculations and comparison to laboratory studies, leads to the conclusion that the disturbances seen in both the lidar and accompanying barograph data represent a weak gravity current and an associated undular bore. The disturbances display excellent coherence over hundreds of kilometers upstream of the lidar site. Bore formation occurs at the leading edge of the gust front coincidentally with the rapid weakening of the gravity current. Analysis suggests that the bore was generated by the collapse of the gravity current into a stable, nocturnal inversion layer, and subsequently propagated along this wave guide at nearly twice the speed of the gravity current. The Raman lidar provided detailed measurements of the vertical structure o...


Journal of Applied Meteorology | 2004

Studying Altocumulus with Ice Virga Using Ground-Based Active and Passive Remote Sensors

Zhien Wang; Kenneth Sassen; David N. Whiteman; Belay Demoz

Mixed-phase clouds are still poorly understood, though studies have indicated that their parameterization in general circulation models is critical for climate studies. Most of the knowledge of mixed-phase clouds has been gained from in situ measurements, but reliable remote sensing algorithms to study mixed-phase clouds extensively are lacking. A combined active and passive remote sensing approach for studying supercooled altocumulus with ice virga, using multiple remote sensor observations, is presented. Precipitating altocumulus clouds are a common type of mixed-phase clouds, and their easily identifiable structure provides a simple scenario to study mixedphase clouds. First, ice virga is treated as an independent ice cloud, and an existing lidar‐radar algorithm to retrieve ice water content and general effective size profiles is applied. Then, a new iterative approach is used to retrieve supercooled water cloud properties by minimizing the difference between atmospheric emitted radiance interferometer (AERI)‐observed radiances and radiances, calculated using the discrete-ordinate radiative transfer model at 12 selected wavelengths. Case studies demonstrate the capabilities of this approach in retrieving radiatively important microphysical properties to characterize this type of mixed-phase cloud. The good agreement between visible optical depths derived from lidar measurement and those estimated from retrieved liquid water path and effective radius provides a closure test for the accuracy of mainly AERI-based supercooled water cloud retrieval.

Collaboration


Dive into the David N. Whiteman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Evans

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. H. Melfi

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Geary K. Schwemmer

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

H. Vömel

Deutscher Wetterdienst

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge