Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Nutt is active.

Publication


Featured researches published by David Nutt.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin

Robin L. Carhart-Harris; David Erritzoe; Timothy J. Williams; James Stone; Laurence Reed; Alessandro Colasanti; Robin J. Tyacke; Robert Leech; Andrea L. Malizia; Kevin P. Murphy; Peter Hobden; John C. Evans; Amanda Feilding; Richard Geoffrey Wise; David Nutt

Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brains key connector hubs, enabling a state of unconstrained cognition.


Frontiers in Human Neuroscience | 2014

The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

Robin L. Carhart-Harris; Robert Leech; Peter J. Hellyer; Murray Shanahan; Amanda Feilding; Enzo Tagliazucchi; Dante R. Chialvo; David Nutt

Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of “primary states” is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit “criticality,” i.e., the property of being poised at a “critical” point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state.


The Lancet Psychiatry | 2016

Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study

Robin L. Carhart-Harris; Mark Bolstridge; Camilla M J Day; David Erritzoe; Mendel Kaelen; Michael Bloomfield; James Rickard; Ben Forbes; Amanda Feilding; David Taylor; Steve Pilling; Valerie Curran; David Nutt

BACKGROUNDnPsilocybin is a serotonin receptor agonist that occurs naturally in some mushroom species. Recent studies have assessed the therapeutic potential of psilocybin for various conditions, including end-of-life anxiety, obsessive-compulsive disorder, and smoking and alcohol dependence, with promising preliminary results. Here, we aimed to investigate the feasibility, safety, and efficacy of psilocybin in patients with unipolar treatment-resistant depression.nnnMETHODSnIn this open-label feasibility trial, 12 patients (six men, six women) with moderate-to-severe, unipolar, treatment-resistant major depression received two oral doses of psilocybin (10 mg and 25 mg, 7 days apart) in a supportive setting. There was no control group. Psychological support was provided before, during, and after each session. The primary outcome measure for feasibility was patient-reported intensity of psilocybins effects. Patients were monitored for adverse reactions during the dosing sessions and subsequent clinic and remote follow-up. Depressive symptoms were assessed with standard assessments from 1 week to 3 months after treatment, with the 16-item Quick Inventory of Depressive Symptoms (QIDS) serving as the primary efficacy outcome. This trial is registered with ISRCTN, number ISRCTN14426797.nnnFINDINGSnPsilocybins acute psychedelic effects typically became detectable 30-60 min after dosing, peaked 2-3 h after dosing, and subsided to negligible levels at least 6 h after dosing. Mean self-rated intensity (on a 0-1 scale) was 0·51 (SD 0·36) for the low-dose session and 0·75 (SD 0·27) for the high-dose session. Psilocybin was well tolerated by all of the patients, and no serious or unexpected adverse events occurred. The adverse reactions we noted were transient anxiety during drug onset (all patients), transient confusion or thought disorder (nine patients), mild and transient nausea (four patients), and transient headache (four patients). Relative to baseline, depressive symptoms were markedly reduced 1 week (mean QIDS difference -11·8, 95% CI -9·15 to -14·35, p=0·002, Hedges g=3·1) and 3 months (-9·2, 95% CI -5·69 to -12·71, p=0·003, Hedges g=2) after high-dose treatment. Marked and sustained improvements in anxiety and anhedonia were also noted.nnnINTERPRETATIONnThis study provides preliminary support for the safety and efficacy of psilocybin for treatment-resistant depression and motivates further trials, with more rigorous designs, to better examine the therapeutic potential of this approach.nnnFUNDINGnMedical Research Council.


The Journal of Neuroscience | 2013

Broadband Cortical Desynchronization Underlies the Human Psychedelic State

Suresh Daniel Muthukumaraswamy; Robin L. Carhart-Harris; Rosalyn J. Moran; Matthew J. Brookes; Tim M. Williams; David Errtizoe; Ben Sessa; A. Papadopoulos; Mark Bolstridge; Krish Devi Singh; Amanda Feilding; K. J. Friston; David Nutt

Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin—prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Neural correlates of the LSD experience revealed by multimodal neuroimaging

Robin L. Carhart-Harris; Suresh Daniel Muthukumaraswamy; Leor Roseman; Mendel Kaelen; W. Droog; Kieran C. Murphy; Enzo Tagliazucchi; E.E. Schenberg; T. Nest; Csaba Orban; Robert Leech; L.T. Williams; Tim M. Williams; Mark Bolstridge; B. Sessa; John McGonigle; Martin I. Sereno; David E. Nichols; Peter J. Hellyer; Peter Hobden; John Evans; Krish Devi Singh; Richard Geoffrey Wise; H.V. Curran; Amanda Feilding; David Nutt

Significance Lysergic acid diethylamide (LSD), the prototypical “psychedelic,” may be unique among psychoactive substances. In the decades that followed its discovery, the magnitude of its effect on science, the arts, and society was unprecedented. LSD produces profound, sometimes life-changing experiences in microgram doses, making it a particularly powerful scientific tool. Here we sought to examine its effects on brain activity, using cutting-edge and complementary neuroimaging techniques in the first modern neuroimaging study of LSD. Results revealed marked changes in brain blood flow, electrical activity, and network communication patterns that correlated strongly with the drug’s hallucinatory and other consciousness-altering properties. These results have implications for the neurobiology of consciousness and for potential applications of LSD in psychological research. Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.


Schizophrenia Bulletin | 2013

Functional Connectivity Measures After Psilocybin Inform a Novel Hypothesis of Early Psychosis

Robin L. Carhart-Harris; Robert Leech; David Erritzoe; Tim M. Williams; James Stone; John Evans; David J. Sharp; Amanda Feilding; Richard Geoffrey Wise; David Nutt

Psilocybin is a classic psychedelic and a candidate drug model of psychosis. This study measured the effects of psilocybin on resting-state network and thalamocortical functional connectivity (FC) using functional magnetic resonance imaging (fMRI). Fifteen healthy volunteers received intravenous infusions of psilocybin and placebo in 2 task-free resting-state scans. Primary analyses focused on changes in FC between the default-mode- (DMN) and task-positive network (TPN). Spontaneous activity in the DMN is orthogonal to spontaneous activity in the TPN, and it is well known that these networks support very different functions (ie, the DMN supports introspection, whereas the TPN supports externally focused attention). Here, independent components and seed-based FC analyses revealed increased DMN-TPN FC and so decreased DMN-TPN orthogonality after psilocybin. Increased DMN-TPN FC has been found in psychosis and meditatory states, which share some phenomenological similarities with the psychedelic state. Increased DMN-TPN FC has also been observed in sedation, as has decreased thalamocortical FC, but here we found preserved thalamocortical FC after psilocybin. Thus, we propose that thalamocortical FC may be related to arousal, whereas DMN-TPN FC is related to the separateness of internally and externally focused states. We suggest that this orthogonality is compromised in early psychosis, explaining similarities between its phenomenology and that of the psychedelic state and supporting the utility of psilocybin as a model of early psychosis.


Human Brain Mapping | 2014

Enhanced repertoire of brain dynamical states during the psychedelic experience

Enzo Tagliazucchi; Robin L. Carhart-Harris; Robert Leech; David Nutt; Dante R. Chialvo

The study of rapid changes in brain dynamics and functional connectivity (FC) is of increasing interest in neuroimaging. Brain states departing from normal waking consciousness are expected to be accompanied by alterations in the aforementioned dynamics. In particular, the psychedelic experience produced by psilocybin (a substance found in “magic mushrooms”) is characterized by unconstrained cognition and profound alterations in the perception of time, space and selfhood. Considering the spontaneous and subjective manifestation of these effects, we hypothesize that neural correlates of the psychedelic experience can be found in the dynamics and variability of spontaneous brain activity fluctuations and connectivity, measurable with functional Magnetic Resonance Imaging (fMRI). Fifteen healthy subjects were scanned before, during and after intravenous infusion of psilocybin and an inert placebo. Blood‐Oxygen Level Dependent (BOLD) temporal variability was assessed computing the variance and total spectral power, resulting in increased signal variability bilaterally in the hippocampi and anterior cingulate cortex. Changes in BOLD signal spectral behavior (including spectral scaling exponents) affected exclusively higher brain systems such as the default mode, executive control, and dorsal attention networks. A novel framework enabled us to track different connectivity states explored by the brain during rest. This approach revealed a wider repertoire of connectivity states post‐psilocybin than during control conditions. Together, the present results provide a comprehensive account of the effects of psilocybin on dynamical behavior in the human brain at a macroscopic level and may have implications for our understanding of the unconstrained, hyper‐associative quality of consciousness in the psychedelic state. Hum Brain Mapp 35:5442–5456, 2014.


British Journal of Psychiatry | 2012

Implications for psychedelic-assisted psychotherapy: functional magnetic resonance imaging study with psilocybin.

Robin L. Carhart-Harris; Robert Leech; Tim M. Williams; David Erritzoe; N. Abbasi; T. Bargiotas; Peter Hobden; David J. Sharp; John Evans; Amanda Feilding; Richard Geoffrey Wise; David Nutt

BACKGROUNDnPsilocybin is a classic psychedelic drug that has a history of use in psychotherapy. One of the rationales for its use was that it aids emotional insight by lowering psychological defences.nnnAIMSnTo test the hypothesis that psilocybin facilitates access to personal memories and emotions by comparing subjective and neural responses to positive autobiographical memories under psilocybin and placebo.nnnMETHODnTen healthy participants received two functional magnetic resonance imaging scans (2 mg intravenous psilocybin v. intravenous saline), separated by approximately 7 days, during which they viewed two different sets of 15 positive autobiographical memory cues. Participants viewed each cue for 6 s and then closed their eyes for 16 s and imagined re-experiencing the event. Activations during this recollection period were compared with an equivalent period of eyes-closed rest. We split the recollection period into an early phase (first 8 s) and a late phase (last 8 s) for analysis.nnnRESULTSnRobust activations to the memories were seen in limbic and striatal regions in the early phase and the medial prefrontal cortex in the late phase in both conditions (P<0.001, whole brain cluster correction), but there were additional visual and other sensory cortical activations in the late phase under psilocybin that were absent under placebo. Ratings of memory vividness and visual imagery were significantly higher after psilocybin (P<0.05) and there was a significant positive correlation between vividness and subjective well-being at follow-up (P<0.01).nnnCONCLUSIONSnEvidence that psilocybin enhances autobiographical recollection implies that it may be useful in psychotherapy either as a tool to facilitate the recall of salient memories or to reverse negative cognitive biases.


Frontiers in Human Neuroscience | 2014

The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers.

Leor Roseman; Robert Leech; Amanda Feilding; David Nutt; Robin L. Carhart-Harris

Perturbing a system and observing the consequences is a classic scientific strategy for understanding a phenomenon. Psychedelic drugs perturb consciousness in a marked and novel way and thus are powerful tools for studying its mechanisms. In the present analysis, we measured changes in resting-state functional connectivity (RSFC) between a standard template of different independent components analysis (ICA)-derived resting state networks (RSNs) under the influence of two different psychoactive drugs, the stimulant/psychedelic hybrid, MDMA, and the classic psychedelic, psilocybin. Both were given in placebo-controlled designs and produced marked subjective effects, although reports of more profound changes in consciousness were given after psilocybin. Between-network RSFC was generally increased under psilocybin, implying that networks become less differentiated from each other in the psychedelic state. Decreased RSFC between visual and sensorimotor RSNs was also observed. MDMA had a notably less marked effect on between-network RSFC, implying that the extensive changes observed under psilocybin may be exclusive to classic psychedelic drugs and related to their especially profound effects on consciousness. The novel analytical approach applied here may be applied to other altered states of consciousness to improve our characterization of different conscious states and ultimately advance our understanding of the brain mechanisms underlying them.


Psychological Medicine | 2016

The paradoxical psychological effects of lysergic acid diethylamide (LSD)

Robin L. Carhart-Harris; Mendel Kaelen; Mark Bolstridge; Tim M. Williams; L.T. Williams; Raphael Underwood; Amanda Feilding; David Nutt

BACKGROUNDnLysergic acid diethylamide (LSD) is a potent serotonergic hallucinogen or psychedelic that modulates consciousness in a marked and novel way. This study sought to examine the acute and mid-term psychological effects of LSD in a controlled study.nnnMETHODnA total of 20 healthy volunteers participated in this within-subjects study. Participants received LSD (75 µg, intravenously) on one occasion and placebo (saline, intravenously) on another, in a balanced order, with at least 2 weeks separating sessions. Acute subjective effects were measured using the Altered States of Consciousness questionnaire and the Psychotomimetic States Inventory (PSI). A measure of optimism (the Revised Life Orientation Test), the Revised NEO Personality Inventory, and the Peters Delusions Inventory were issued at baseline and 2 weeks after each session.nnnRESULTSnLSD produced robust psychological effects; including heightened mood but also high scores on the PSI, an index of psychosis-like symptoms. Increased optimism and trait openness were observed 2 weeks after LSD (and not placebo) and there were no changes in delusional thinking.nnnCONCLUSIONSnThe present findings reinforce the view that psychedelics elicit psychosis-like symptoms acutely yet improve psychological wellbeing in the mid to long term. It is proposed that acute alterations in mood are secondary to a more fundamental modulation in the quality of cognition, and that increased cognitive flexibility subsequent to serotonin 2A receptor (5-HT2AR) stimulation promotes emotional lability during intoxication and leaves a residue of loosened cognition in the mid to long term that is conducive to improved psychological wellbeing.

Collaboration


Dive into the David Nutt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Leech

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leor Roseman

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge