Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David O. Kamson is active.

Publication


Featured researches published by David O. Kamson.


Molecular Imaging | 2014

Comparison of Amino Acid Positron Emission Tomographic Radiotracers for Molecular Imaging of Primary and Metastatic Brain Tumors

Csaba Juhász; Shalini Dwivedi; David O. Kamson; Sharon K. Michelhaugh; Sandeep Mittal

Positron emission tomography (PET) is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (l-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-l-dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-l-tryptophan [AMT]) most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-d-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.Positron emission tomography (PET) is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (L-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-L- dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-L-tryptophan [AMT]) most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-D-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.


Molecular Imaging | 2013

Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

David O. Kamson; Sandeep Mittal; Amy Buth; Otto Muzik; William J. Kupsky; Natasha L. Robinette; Geoffrey R. Barger; Csaba Juhász

Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI); molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT)–positron emission tomography (PET) to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs). Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD]) from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74%) and the tumor/cortex VD ratio had the highest positive predictive value (82%). The combined accuracy of MRI (size of contrast-enhancing lesion) and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.


Neuro-oncology | 2014

Increased tryptophan uptake on PET has strong independent prognostic value in patients with a previously treated high-grade glioma

David O. Kamson; Sandeep Mittal; Natasha L. Robinette; Otto Muzik; William J. Kupsky; Geoffrey R. Barger; Csaba Juhász

BACKGROUND Previously, we demonstrated the high accuracy of alpha-[(11)C]methyl-L-tryptophan (AMT) PET for differentiating recurrent gliomas from radiation injury. The present study evaluated the prognostic value of increased AMT uptake in patients with previously treated high-grade glioma. METHODS AMT-PET was performed in 39 patients with suspected recurrence of World Health Organization grades III-IV glioma following surgical resection, radiation, and chemotherapy. Mean and maximum standardized uptake values (SUVs) and unidirectional AMT uptake (K) were measured in brain regions suspicious for tumor and compared with the contralateral cortex (ie, background). Optimal cutoff thresholds for 1-year survival prediction were determined for each AMT parameter and used for calculating the prognostic value of high (above threshold) versus low (below threshold) values for post-PET overall survival (OS). RESULTS In univariate analyses, 1-year survival was strongly associated with 3 AMT parameters (SUVmax, SUVmean, and tumor-to-background K-ratio; odds ratios: 21.3-25.6; P ≤ .001) and with recent change in MRI contrast enhancement (odds ratio: 14.7; P = .02). Median OS was 876 days in the low- versus 177 days in the high-AMT groups (log-rank P < .001). In multivariate analyses, all 3 AMT parameters remained strong predictors of survival: high AMT values were associated with unfavorable 1-year survival (binary regression P ≤ .003) and shorter overall survival in the whole group (Cox regression hazard ratios: 5.3-10.0) and in patients with recent enhancement change on MRI as well (hazard ratios: 7.0-9.3; P ≤ .001). CONCLUSION Increased AMT uptake on PET is highly prognostic for 1-year and overall survival, independent of MRI contrast enhancement and other prognostic factors in patients with a previously treated high-grade glioma.


Journal of Neuro-oncology | 2013

Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates

David O. Kamson; Csaba Juhász; Amy Buth; William J. Kupsky; Geoffrey R. Barger; Pulak K. Chakraborty; Otto Muzik; Sandeep Mittal

Pretreatment delineation of infiltrating glioma volume remains suboptimal with current neuroimaging techniques. Gadolinium-enhanced T1-weighted (T1-Gad) MR images often underestimate the true extent of the tumor, while T2-weighted images preferentially highlight peritumoral edema. Accumulation of α-[11C]methyl-l-tryptophan (AMT) on positron emission tomography (PET) has been shown in gliomas. To determine whether increased uptake on AMT–PET would detect tumor-infiltrated brain tissue outside the contrast-enhancing region and differentiate it from peritumoral vasogenic edema, volumes and spatial concordance of T1-Gad and T2 MRI abnormalities as well as AMT–PET abnormalities were analyzed in 28 patients with newly-diagnosed WHO grade II–IV gliomas. AMT-accumulating grade I meningiomas were used to define an AMT uptake cutoff threshold that detects the tumor but excludes peri-meningioma vasogenic edema. Tumor infiltration in AMT-accumulating areas was studied in stereotactically-resected specimens from patients with glioblastoma. In the 28 gliomas, mean AMT–PET-defined tumor volumes were greater than the contrast-enhancing volume, but smaller than T2 abnormalities. Volume of AMT-accumulating tissue outside MRI abnormalities increased with higher tumor proliferative index and was the largest in glioblastomas. Tumor infiltration was confirmed by histopathology from AMT-positive regions outside contrast-enhancing glioblastoma mass, while no or minimal tumor cells were found in AMT-negative specimens. These results demonstrate that increased AMT accumulation on PET detects glioma-infiltrated brain tissue extending beyond the contrast-enhanced tumor mass. While tryptophan uptake is low in peritumoral vasogenic edema, AMT–PET can detect tumor-infiltrated brain outside T2-lesions. Thus, AMT–PET may assist pretreatment delineation of tumor infiltration, particularly in high-grade gliomas.


Cancer Biology & Therapy | 2013

In vivo metabolism of tryptophan in meningiomas is mediated by indoleamine 2,3-dioxygenase 1.

Ian Zitron; David O. Kamson; Sam Kiousis; Csaba Juhász; Sandeep Mittal

Expression and activity of indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting step of the kynurenine pathway of tryptophan catabolism, can enable tumor cells to effectively evade the host’s immune response. The potential role of this system was investigated in meningiomas. Surgical specimens from 22 patients with meningiomas were used for cellular, immunological and molecular techniques (immunofluorescence, western blotting, RT-PCR and biochemical assay of enzyme activity) to investigate the expression and activity of IDO. In addition, PET imaging was obtained preoperatively in 10 patients using the tracer α-[11C]methyl-L-tryptophan (AMT) which interrogates the uptake and metabolism of tryptophan. Strong AMT accumulation was noted in all meningiomas by PET imaging indicating in vivo tryptophan uptake. Freshly-resected meningiomas expressed both LAT1, the tryptophan transporter system and IDO, demonstrating an active kynurenine pathway. Dissociated meningioma cells lost IDO expression. Following exposure to interferon-γ (IFNγ), IDO expression was reinduced and could be blocked by a selective IDO1 inhibitor. IDO activity may represent an element of local self-protection by meningiomas and could be targeted by emerging IDO1 inhibitors.


Pediatric Neurology | 2014

Patterns of Structural Reorganization of the Corticospinal Tract in Children With Sturge-Weber Syndrome

David O. Kamson; Csaba Juhász; Joseph Shin; Michael E. Behen; William C. Guy; Harry T. Chugani; Jeong Won Jeong

BACKGROUND Reorganization of the corticospinal tract after early damage can limit motor deficit. In this study, we explored patterns of structural corticospinal tract reorganization in children with Sturge-Weber syndrome. METHODS Five children (age 1.5-7 years) with motor deficit resulting from unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). Corticospinal tract segments belonging to hand and leg movements were separated and their volume was measured by diffusion tensor imaging tractography using a recently validated method. Corticospinal tract segmental volumes were normalized and compared between the Sturge-Weber syndrome children and age-matched healthy controls. Volume changes during follow-up were also compared with clinical motor symptoms. RESULTS In the Sturge-Weber syndrome children, hand-related (but not leg-related) corticospinal tract volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand corticospinal tract volume changes emerged. (1) Two children with extensive frontal lobe damage showed a corticospinal tract volume decrease in the lesional hemisphere and a concomitant increase in the nonlesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (2) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand corticospinal tract volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. CONCLUSIONS Diffusion tensor imaging tractography can detect differential abnormalities in the hand corticospinal tract segment both ipsi- and contralateral to the lesion. Interval increase in the corticospinal tract hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention.


Cancer Imaging | 2015

Multi-modal imaging of tumor cellularity and Tryptophan metabolism in human Gliomas

Jeong Won Jeong; Csaba Juhász; Sandeep Mittal; Edit Bosnyák; David O. Kamson; Geoffrey R. Barger; Natasha L. Robinette; William J. Kupsky; Diane C. Chugani

BackgroundTo assess gliomas using image-based estimation of cellularity, we utilized isotropic diffusion spectrum imaging (IDSI) on clinically feasible diffusion tensor imaging (DTI) and compared it with amino acid uptake measured by α[11C]methyl-L-tryptophan positron emission tomography (AMT-PET).MethodsIn 10 patients with a newly-diagnosed glioma, metabolically active tumor regions were defined in both FLAIR hyperintense areas and based on increased uptake on AMT-PET. A recently developed independent component analysis with a ball and stick model was extended to perform IDSI in clinical DTI data. In tumor regions, IDSI was used to define tumor cellularity which was compared between low and high grade glioma and correlated with the glioma proliferative index.ResultsThe IDSI-derived cellularity values were elevated in both FLAIR and AMT-PET-derived regions of high-grade gliomas. ROC curve analysis found that the IDSI-derived cellularity can provide good differentiation of low-grade from high-grade gliomas (accuracy/sensitivity/specificity of 0.80/0.80/0.80). . Both apparent diffusion coefficient (ADC) and IDSI-derived cellularity showed a significant correlation with the glioma proliferative index (based on Ki-67 labeling; R = 0.95, p < 0.001), which was particularly strong when the tumor regions were confined to areas with high tryptophan uptake excluding areas with peritumoral edema.ConclusionIDSI-MRI combined with AMT-PET may provide a multi-modal imaging tool to enhance pretreatment assessment of human gliomas by evaluating tumor cellularity and differentiate low-grade form high-grade gliomas.


The Journal of Nuclear Medicine | 2014

Clinical Significance of Tryptophan Metabolism in the Nontumoral Hemisphere in Patients with Malignant Glioma

David O. Kamson; Tiffany J. Lee; Kaushik Varadarajan; Natasha L. Robinette; Otto Muzik; Pulak K. Chakraborty; Michael Snyder; Geoffrey R. Barger; Sandeep Mittal; Csaba Juhász

α-11C-methyl-l-tryptophan (AMT) PET allows evaluation of brain serotonin synthesis and can also track upregulation of the immunosuppressive kynurenine pathway in tumor tissue. Increased AMT uptake is a hallmark of World Health Organization grade III–IV gliomas. Our recent study also suggested decreased frontal cortical AMT uptake in glioma patients contralateral to the tumor. The clinical significance of extratumoral tryptophan metabolism has not been established. In the present study, we investigated clinical correlates of tryptophan metabolic abnormalities in the nontumoral hemisphere of glioma patients. Methods: Standardized AMT uptake values (SUVs) and the uptake rate constant of AMT (K [mL/g/min], a measure proportional to serotonin synthesis in nontumoral gray matter) were quantified in the frontal and temporal cortex and thalamus in the nontumoral hemisphere in 77 AMT PET scans of 66 patients (41 men, 25 women; mean age ± SD, 55 ± 15 y) with grade III–IV gliomas. These AMT values were determined before treatment in 35 and after treatment in 42 patients and were correlated with clinical variables and survival. Results: AMT uptake in the thalamus showed a moderate age-related increase before treatment (SUV, r = 0.39, P = 0.02) but decrease after treatment (K, r = −0.33, P = 0.057). Women had higher thalamic SUVs before treatment (P = 0.037) and higher thalamic (P = 0.013) and frontal cortical K values (P = 0.023) after treatment. In the posttreatment glioma group, high thalamic SUVs and high thalamocortical SUV ratios were associated with short survival in Cox regression analysis. The thalamocortical ratio remained strongly prognostic (P < 0.01) when clinical predictors, including age, glioma grade, and time since radiotherapy, were entered in the regression model. Long interval between radiotherapy and posttreatment AMT PET as well as high radiation dose affecting the thalamus were associated with lower contralateral thalamic or cortical AMT uptake values. Conclusion: These observations provide evidence for altered tryptophan uptake in contralateral cortical and thalamic brain regions in glioma patients after initial therapy, suggesting treatment effects on the serotonergic system. Low thalamic tryptophan uptake appears to be a strong, independent predictor of long survival in patients with previous glioma treatment.


Clinical Nuclear Medicine | 2017

Prognostic Molecular and Imaging Biomarkers in Primary Glioblastoma

Edit Bosnyák; Sharon K. Michelhaugh; Neil V. Klinger; David O. Kamson; Geoffrey R. Barger; Sandeep Mittal; Csaba Juhász

Purpose Several molecular glioma markers (including isocitrate dehydrogenase 1 [IDH1] mutation, amplification of the epidermal growth factor receptor [EGFR], and methylation of the O6-methylguanine-DNA methyltransferase [MGMT] promoter) have been associated with glioblastoma survival. In this study, we examined the association between tumoral amino acid uptake, molecular markers, and overall survival in patients with IDH1 wild-type (primary) glioblastoma. Patients and Methods Twenty-one patients with newly diagnosed IDH1 wild-type glioblastomas underwent presurgical MRI and PET scanning with alpha[C-11]-L-methyl-tryptophan (AMT). MRI characteristics (T2- and T1-contrast volume), tumoral tryptophan uptake, PET-based metabolic tumor volume, and kinetic variables were correlated with prognostic molecular markers (EGFR and MGMT) and overall survival. Results EGFR amplification was associated with lower T1-contrast volume (P = 0.04) as well as lower T1-contrast/T2 volume (P = 0.04) and T1-contrast/PET volume ratios (P = 0.02). Tumors with MGMT promoter methylation showed lower metabolic volume (P = 0.045) and lower tumor/cortex AMT unidirectional uptake ratios than those with unmethylated MGMT promoter (P = 0.009). While neither EGFR amplification nor MGMT promoter methylation was significantly associated with survival, high AMT tumor/cortex uptake ratios on PET were strongly prognostic for longer survival (hazards ratio, 30; P = 0.002). Estimated mean overall survival was 26 months in patients with high versus 8 months in those with low tumoral AMT uptake ratios. Conclusions The results demonstrate specific MRI and amino acid PET imaging characteristics associated with EGFR amplification and MGMT promoter methylation in patients with primary glioblastoma. High tryptophan uptake on PET may identify a subgroup with prolonged survival.


Brain & Development | 2015

Novel diffusion tensor imaging technique reveals developmental streamline volume changes in the corticospinal tract associated with leg motor control

David O. Kamson; Csaba Juhász; Harry T. Chugani; Jeong Won Jeong

BACKGROUND Diffusion tensor imaging (DTI) has expanded our knowledge of corticospinal tract (CST) anatomy and development. However, previous developmental DTI studies assessed the CST as a whole, overlooking potential differences in development of its components related to control of the upper and lower extremities. The present cross-sectional study investigated age-related changes, side and gender differences in streamline volume of the leg- and hand-related segments of the CST in children. SUBJECTS AND METHODS DTI data of 31 children (1-14 years; mean age: 6±4 years; 17 girls) with normal conventional MRI were analyzed. Leg- and hand-related CST streamline volumes were quantified separately, using a recently validated novel tractography approach. CST streamline volumes on both sides were compared between genders and correlated with age. RESULTS Higher absolute streamline volumes were found in the left leg-related CST compared to the right (p=0.001) without a gender effect (p=0.4), whereas no differences were found in the absolute hand-related CST volumes (p>0.4). CST leg-related streamline volumes, normalized to hemispheric white matter volumes, declined with age in the right hemisphere only (R=-.51; p=0.004). Absolute leg-related CST streamline volumes showed similar, but slightly weaker correlations. Hand-related absolute or normalized CST streamline volumes showed no age-related variations on either side. CONCLUSION These results suggest differential development of CST segments controlling hand vs. leg movements. Asymmetric volume changes in the lower limb motor pathway may be secondary to gradually strengthening left hemispheric dominance and is consistent with previous data suggesting that footedness is a better predictor of hemispheric lateralization than handedness.

Collaboration


Dive into the David O. Kamson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Otto Muzik

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge