David P.B.T.B. Strik
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David P.B.T.B. Strik.
Applied Microbiology and Biotechnology | 2010
Hubertus V.M. Hamelers; Annemiek ter Heijne; Tom H. J. A. Sleutels; Adriaan W. Jeremiasse; David P.B.T.B. Strik; Cees J. N. Buisman
Bioelectrochemical systems (BESs) are emerging technologies which use microorganisms to catalyze the reactions at the anode and/or cathode. BES research is advancing rapidly, and a whole range of applications using different electron donors and acceptors has already been developed. In this mini review, we focus on technological aspects of the expanding application of BESs. We will analyze the anode and cathode half-reactions in terms of their standard and actual potential and report the overpotentials of these half-reactions by comparing the reported potentials with their theoretical potentials. When combining anodes with cathodes in a BES, new bottlenecks and opportunities arise. For application of BESs, it is crucial to lower the internal energy losses and increase productivity at the same time. Membranes are a crucial element to obtain high efficiencies and pure products but increase the internal resistance of BESs. The comparison between production of fuels and chemicals in BESs and in present production processes should gain more attention in future BES research. By making this comparison, it will become clear if the scope of BESs can and should be further developed into the field of biorefineries.
Bioresource Technology | 2010
Marjolein Helder; David P.B.T.B. Strik; H.V.M. Hamelers; A.J. Kuhn; C. Blok; Cees J.N. Buisman
In a Plant Microbial Fuel Cell (P-MFC) three plants were tested for concurrent biomass and bio-electricity production and maximization of power output. Spartina anglica and Arundinella anomala concurrently produced biomass and bio-electricity for six months consecutively. Average power production of the P-MFC with S. anglica during 13weeks was 16% of the theoretical maximum power and 8% during 7weeks for A. anomala. The P-MFC with Arundo donax, did not produce electricity with a stable output, due to break down of the system. The highest obtained power density in a P-MFC was 222mW/m(2) membrane surface area with S. anglica, over twice as high as the highest reported power density in a P-MFC. High biomass yields were obtained in all P-MFCs, with a high root:shoot ratio, probably caused nutrient availability and anaerobia in the soil. Power output maximization via adjusting load on the system lead to unstable performance of the P-MFC.
Bioresource Technology | 2015
Suman Bajracharya; Annemiek ter Heijne; Xochitl Dominguez Benetton; Karolien Vanbroekhoven; Cees J.N. Buisman; David P.B.T.B. Strik; Deepak Pant
Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.
Environmental Science & Technology | 2010
A. ter Heijne; David P.B.T.B. Strik; Hubertus V.M. Hamelers; Cees J.N. Buisman
The main limiting factor in Microbial Fuel Cell (MFC) power output is the cathode, because of the high overpotential for oxygen reduction. Oxygen reducing biocathodes can decrease this overpotential by the use of microorganisms as a catalyst. In this study, we investigated the factors limiting biocathode performance. Three biocathodes were started up at different cathode potentials, and their performance and catalytic behavior was tested by means of polarization curves and cyclic voltammetry. The biocathodes controlled at +0.05 V and +0.15 V vs Ag/AgCl produced current almost immediately after inoculation, while the biocathode controlled at +0.25 V vs Ag/AgCl produced no current until day 15. The biocathode controlled at +0.15 V vs Ag/AgCl reached the highest current density of 313 mA/m(2). Cyclic voltammetry showed clear catalysis for all three biocathodes. The biocathodes were limited by both mass transfer of oxygen and by charge transfer. Mass transfer calculations show that the transfer of oxygen poses a serious limitation for the use of dissolved oxygen as an electron acceptor in MFCs.
Environmental Science & Technology | 2010
David P.B.T.B. Strik; Hubertus V.M. Hamelers; Cees J.N. Buisman
The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.
Environmental Science & Technology | 2016
Largus T. Angenent; Hanno Richter; Wolfgang Buckel; Catherine M. Spirito; Kirsten J. J. Steinbusch; Caroline M. Plugge; David P.B.T.B. Strik; Tim I. M. Grootscholten; Cees J.N. Buisman; Hubertus V.M. Hamelers
Chain elongation into medium-chain carboxylates, such as n-caproate and n-caprylate, with ethanol as an electron donor and with open cultures of microbial consortia (i.e., reactor microbiomes) under anaerobic conditions is being developed as a biotechnological production platform. The goal is to use the high thermodynamic efficiency of anaerobic fermentation to convert organic biomass or organic wastes into valuable biochemicals that can be extracted. Several liter-scale studies have been completed and a first pilot-plant study is underway. However, the underlying microbial pathways are not always well understood. In addition, an interdisciplinary approach with knowledge from fields ranging from microbiology and chemical separations to biochemistry and environmental engineering is required. To bring together research from different fields, we reviewed the literature starting with the microbiology and ending with the bioprocess engineering studies that already have been performed. Because understanding the microbial pathways is so important to predict and steer performance, we delved into a stoichiometric and thermodynamic model that sheds light on the effect of substrate ratios and environmental conditions on product formation. Finally, we ended with an outlook.
Applied Microbiology and Biotechnology | 2012
Ruud A. Timmers; Michael Rothballer; David P.B.T.B. Strik; Marion Engel; Stephan Schulz; Michael Schloter; Anton Hartmann; Bert Hamelers; Cees J.N. Buisman
The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode–rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.
Bioelectrochemistry | 2017
Suman Bajracharya; Rustiana Yuliasni; Karolien Vanbroekhoven; Cees J.N. Buisman; David P.B.T.B. Strik; Deepak Pant
In microbial electrosynthesis (MES), CO2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H2:CO2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO2 electro-reduction accomplished a maximum acetate production rate of 400mgLcatholyte-1d-1 at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL-1 was repeatedly attained by supplying (80:20) CO2:N2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO2 reduction. Thus, a robust CO2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor.
Bioresource Technology | 2012
Marjolein Helder; David P.B.T.B. Strik; H.V.M. Hamelers; R.C.P. Kuijken; Cees J.N. Buisman
In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential losses over the membrane because of differences in pH between anode and cathode. We developed a new, improved plant-growth medium that improves current production, while the plant keeps growing. This medium is a nitrate-less, ammonium-rich medium that contains all macro- and micro-nutrients necessary for plant growth, with a balanced amount of bicarbonate buffer. Sulphate presence in the plant-growth medium helps to keep a low anode-potential. With the new plant-growth medium the maximum current production of the Plant-Microbial Fuel Cell increased from 186 mA/m(2) to 469 mA/m(2).
Biotechnology for Biofuels | 2012
Marjolein Helder; David P.B.T.B. Strik; Hubertus V.M. Hamelers; Cees J.N. Buisman
Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC) is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2)as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3). Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility.