Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David P. Bartel is active.

Publication


Featured researches published by David P. Bartel.


Cell | 2004

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

David P. Bartel

MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.


Cell | 2009

MicroRNAs: target recognition and regulatory functions.

David P. Bartel

MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.


Nature | 2005

MICROARRAY ANALYSIS SHOWS THAT SOME MICRORNAS DOWNREGULATE LARGE NUMBERS OF TARGET MRNAS

Lee P. Lim; Nelson C. Lau; Philip Garrett-Engele; Andrew Grimson; Janell M. Schelter; John C. Castle; David P. Bartel; Peter S. Linsley; Jason M. Johnson

MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3′ untranslated regions of these messages had a significant propensity to pair to the 5′ region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.


Nature | 2008

The impact of microRNAs on protein output

Daehyun Baek; Judit Villén; Chanseok Shin; Fernando D. Camargo; Steven P. Gygi; David P. Bartel

MicroRNAs are endogenous ∼23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3′ untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.


Nature | 2010

Mammalian microRNAs predominantly act to decrease target mRNA levels

Huili Guo; Nicholas T. Ingolia; Jonathan S. Weissman; David P. Bartel

MicroRNAs (miRNAs) are endogenous ∼22-nucleotide RNAs that mediate important gene-regulatory events by pairing to the mRNAs of protein-coding genes to direct their repression. Repression of these regulatory targets leads to decreased translational efficiency and/or decreased mRNA levels, but the relative contributions of these two outcomes have been largely unknown, particularly for endogenous targets expressed at low-to-moderate levels. Here, we use ribosome profiling to measure the overall effects on protein production and compare these to simultaneously measured effects on mRNA levels. For both ectopic and endogenous miRNA regulatory interactions, lowered mRNA levels account for most (≥84%) of the decreased protein production. These results show that changes in mRNA levels closely reflect the impact of miRNAs on gene expression and indicate that destabilization of target mRNAs is the predominant reason for reduced protein output.


Cell | 2000

RNAi: Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals

Phillip D. Zamore; Thomas Tuschl; Phillip A. Sharp; David P. Bartel

Double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Using a recently developed Drosophila in vitro system, we examined the molecular mechanism underlying RNAi. We find that RNAi is ATP dependent yet uncoupled from mRNA translation. During the RNAi reaction, both strands of the dsRNA are processed to RNA segments 21-23 nucleotides in length. Processing of the dsRNA to the small RNA fragments does not require the targeted mRNA. The mRNA is cleaved only within the region of identity with the dsRNA. Cleavage occurs at sites 21-23 nucleotides apart, the same interval observed for the dsRNA itself, suggesting that the 21-23 nucleotide fragments from the dsRNA are guiding mRNA cleavage.


Cell | 2006

Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells

Tong Ihn Lee; Richard G. Jenner; Laurie A. Boyer; Matthew G. Guenther; Stuart S. Levine; Roshan M. Kumar; Brett Chevalier; Sarah E. Johnstone; Megan F. Cole; Kyoichi Isono; Haruhiko Koseki; Takuya Fuchikami; Kuniya Abe; Heather L. Murray; Jacob P. Zucker; Bingbing Yuan; George W. Bell; Elizabeth Herbolsheimer; Nancy M. Hannett; Kaiming Sun; Duncan T. Odom; Arie P. Otte; Thomas L. Volkert; David P. Bartel; Douglas A. Melton; David K. Gifford; Rudolf Jaenisch; Richard A. Young

Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.


Cell | 2002

Prediction of Plant MicroRNA Targets

Matthew W. Rhoades; Brenda J. Reinhart; Lee P. Lim; Christopher B. Burge; Bonnie Bartel; David P. Bartel

We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages.


Cell | 2008

Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells

Alexander Marson; Stuart S. Levine; Megan F. Cole; Garrett M. Frampton; Tobias Brambrink; Sarah E. Johnstone; Matthew G. Guenther; Wendy K. Johnston; Marius Wernig; Jamie J. Newman; J. Mauro Calabrese; Lucas M. Dennis; Thomas L. Volkert; Sumeet Gupta; Jennifer Love; Nancy M. Hannett; Phillip A. Sharp; David P. Bartel; Rudolf Jaenisch; Richard A. Young

MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb group proteins in ES cells and shows tissue-specific expression in differentiated cells. These data reveal how key ES cell transcription factors promote the ES cell miRNA expression program and integrate miRNAs into the regulatory circuitry controlling ES cell identity.


Science | 2005

The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution

Kyle Kai-How Farh; Andrew Grimson; Calvin H. Jan; Benjamin P. Lewis; Wendy K. Johnston; Lee P. Lim; Christopher B. Burge; David P. Bartel

Thousands of mammalian messenger RNAs are under selective pressure to maintain 7-nucleotide sites matching microRNAs (miRNAs). We found that these conserved targets are often highly expressed at developmental stages before miRNA expression and that their levels tend to fall as the miRNA that targets them begins to accumulate. Nonconserved sites, which outnumber the conserved sites 10 to 1, also mediate repression. As a consequence, genes preferentially expressed at the same time and place as a miRNA have evolved to selectively avoid sites matching the miRNA. This phenomenon of selective avoidance extends to thousands of genes and enables spatial and temporal specificities of miRNAs to be revealed by finding tissues and developmental stages in which messages with corresponding sites are expressed at lower levels.

Collaboration


Dive into the David P. Bartel's collaboration.

Top Co-Authors

Avatar

Phillip A. Sharp

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Phillip D. Zamore

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin H. Jan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher B. Burge

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Graham Ruby

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee P. Lim

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Soraya Yekta

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge