Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David P. Marshall is active.

Publication


Featured researches published by David P. Marshall.


Journal of Physical Oceanography | 2002

A Theory for the Surface Atlantic Response to Thermohaline Variability

H. L. Johnson; David P. Marshall

Abstract The response of the upper, warm limb of the thermohaline circulation in the North Atlantic to a rapid change in deep-water formation at high latitudes is investigated using a reduced-gravity ocean model. Changes in deep-water formation rate initiate Kelvin waves that propagate along the western boundary to the equator on a timescale of months. The response in the North Atlantic is therefore rapid. The Southern Hemisphere response is much slower, limited by a mechanism here termed the &ldquo=uatorial buffer.” Since to leading order the flow is in geostrophic balance, the pressure anomaly decreases in magnitude as the Kelvin wave moves equatorward, where the Coriolis parameter is lower. Together with the lack of sustained pressure gradients along the eastern boundary, this limits the size of the pressure field response in the Southern Hemisphere. Interior adjustment is by the westward propagation of Rossby waves, but only a small fraction of the change in thermohaline circulation strength is commun...


Journal of Marine Research | 1997

Subduction of water masses in an eddying ocean

David P. Marshall

Mesoscale eddies modify the rate at which a water mass transfers from the surface mixed layer of the ocean into the interior thermocline, in particular in regions of intense baroclinic instability such as the Antarctic Circumpolar Current, open-ocean convective chimneys, and ocean fronts. Here, the time-mean subduction of a water mass, evaluated following the meandering surface density outcrops, is found to incorporate a rectified contribution from eddies, arising from correlations between the area over which the water mass is outcropped at the sea surface and the local subduction rate. Alternatively, this eddy subduction can be interpreted in terms of an eddy-driven secondary circulation associated with baroclinic instability. The net subduction rate, incorporating both Eulerian-mean and eddy contributions, can be further related to buoyancy forcing of the surface mixed layer using a formula by Walin (1982). Solutions from an idealized two-dimensional ocean model are presented to illustrate the eddy contribution to subduction rates in the Southern Ocean and in an open-ocean convective chimney. In the Southern Ocean, the net subduction rate is the residual of the Eulerian-mean and eddy contributions, which cancel at leading order; given plausible patterns of surface buoyancy forcing, one can obtain subduction of Antarctic Intermediate Water and Antarctic Bottom Water, with entrainment of North Atlantic Deep Water in between. In a convective chimney, in contrast, the Eulerian-mean subduction rate is vanishingly small and the subduction is contributed entirely by mesoscale eddies.


Journal of Physical Oceanography | 2013

Eddy Saturation of Equilibrated Circumpolar Currents

David R. Munday; H. L. Johnson; David P. Marshall

AbstractThis study uses a sector configuration of an ocean general circulation model to examine the sensitivity of circumpolar transport and meridional overturning to changes in Southern Ocean wind stress and global diapycnal mixing. At eddy-permitting, and finer, resolution, the sensitivity of circumpolar transport to forcing magnitude is drastically reduced. At sufficiently high resolution, there is little or no sensitivity of circumpolar transport to wind stress, even in the limit of no wind. In contrast, the meridional overturning circulation continues to vary with Southern Ocean wind stress, but with reduced sensitivity in the limit of high wind stress. Both the circumpolar transport and meridional overturning continue to vary with diapycnal diffusivity at all model resolutions. The circumpolar transport becomes less sensitive to changes in diapycnal diffusivity at higher resolution, although sensitivity always remains. In contrast, the overturning circulation is more sensitive to change in diapycnal...


Reviews of Geophysics | 2011

Sustained monitoring of the southern ocean at Drake Passage: Past achievements and future priorities

Michael P. Meredith; Philip L. Woodworth; Teresa K. Chereskin; David P. Marshall; L. C. Allison; Grant R. Bigg; Kathy Donohue; Karen J. Heywood; Chris W. Hughes; Angela Hibbert; Andrew McC. Hogg; H. L. Johnson; L. Jullion; Brian A. King; Harry Leach; Yueng-Djern Lenn; M. A. Morales Maqueda; David R. Munday; Alberto C. Naveira Garabato; Christine Provost; Jean-Baptiste Sallée; Janet Sprintall

Drake Passage is the narrowest constriction of the Antarctic Circumpolar Current (ACC) in the Southern Ocean, with implications for global ocean circulation and climate. We review the long-term sustained monitoring programs that have been conducted at Drake Passage, dating back to the early part of the twentieth century. Attention is drawn to numerous breakthroughs that have been made from these programs, including (1) the first determinations of the complex ACC structure and early quantifications of its transport; (2) realization that the ACC transport is remarkably steady over interannual and longer periods, and a growing understanding of the processes responsible for this; (3) recognition of the role of coupled climate modes in dictating the horizontal transport and the role of anthropogenic processes in this; and (4) understanding of mechanisms driving changes in both the upper and lower limbs of the Southern Ocean overturning circulation and their impacts. It is argued that monitoring of this passage remains a high priority for oceanographic and climate research but that strategic improvements could be made concerning how this is conducted. In particular, long-term programs should concentrate on delivering quantifications of key variables of direct relevance to large-scale environmental issues: In this context, the time-varying overturning circulation is, if anything, even more compelling a target than the ACC flow. Further, there is a need for better international resource sharing and improved spatiotemporal coordination of the measurements. If achieved, the improvements in understanding of important climatic issues deriving from Drake Passage monitoring can be sustained into the future.


Journal of Marine Research | 1997

On the eddy transfer of tracers: Advective or diffusive?

Mei-Man Lee; David P. Marshall; Richard G. Williams

Geostrophic eddies have traditionally been viewed within oceanography as diffusing water masses and tracers in a down-gradient manner. However, eddies also have an advective role that may lead to an up-gradient transfer of tracers, as has been recognized in atmospheric tracer studies and recent eddy parameterizations developed for the ocean. Eddies provide an advective transfer or “bolus” velocity through the secondary circulation formed by the slumping of density surfaces in baroclinic instability. Here we use an eddy-resolving isopycnal ocean model to investigate the meridional transfer across a zonal jet. The jet undergoes baroclinic instability, forming a vibrant eddy field and inducing a meridional bolus velocity. The bolus velocity is found to be correlated with gradients of potential


Journal of Physical Oceanography | 1998

Do We Require Adiabatic Dissipation Schemes in Eddy-Resolving Ocean Models?

Malcolm J. Roberts; David P. Marshall

Abstract Use of horizontal diffusion of temperature and salinity in numerical ocean models causes spurious diapycnal transfers—the “Veronis effect”—leading to erosion of the thermocline and reduced poleward heat transports. The authors derive a relation between these diapycnal transfers and the dissipation of vorticity gradients. An increase in model resolution does not significantly reduce the diapycnal transfers since vorticity gradients cascade to smaller scales and must ultimately be dissipated to maintain numerical stability. This is confirmed in an idealized primitive equation ocean model at a variety of resolutions between 1° and 1/8°. Thus, the authors conclude that adiabatic dissipation schemes are required, even in eddy-resolving ocean models. The authors propose and implement a new biharmonic form of the Gent and McWilliams scheme, which adiabatically dissipates at the grid scale while preserving larger-scale features.


Journal of Physical Oceanography | 2009

Basinwide Integrated Volume Transports in an Eddy-Filled Ocean

Torsten Kanzow; H. L. Johnson; David P. Marshall; S. A. Cunningham; Joël J.-M. Hirschi; A. Mujahid; Harry L. Bryden; William E. Johns

The temporal evolution of the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the subtropical North Atlantic is affected by both remotely forced, basin-scale meridionally coherent, climate-relevant transport anomalies, such as changes in high-latitude deep water formation rates, and locally forced transport anomalies, such as eddies or Rossby waves, possibly associated with small meridional coherence scales, which can be considered as noise. The focus of this paper is on the extent to which local eddies and Rossby waves when impinging on the western boundary of the Atlantic affect the temporal variability of the AMOC at 26.5 degrees N. Continuous estimates of the AMOC at this latitude have been made since April 2004 by combining the Florida Current, Ekman, and midocean transports with the latter obtained from continuous density measurements between the coasts of the Bahamas and Morocco, representing, respectively, the western and eastern boundaries of the Atlantic at this latitude.Within 100 km of the western boundary there is a threefold decrease in sea surface height variability toward the boundary, observed in both dynamic heights from in situ density measurements and altimetric heights. As a consequence, the basinwide zonally integrated upper midocean transport shallower than 1000 m-as observed continuously between April 2004 and October 2006-varies by only 3.0 Sv (1 Sv = 10(6) m(3) s(-1)) RMS. Instead, upper midocean transports integrated from western boundary stations 16, 40, and 500 km offshore to the eastern boundary vary by 3.6, 6.0, and 10.7 Sv RMS, respectively. The reduction in eddy energy toward the western boundary is reproduced in a nonlinear reduced-gravity model suggesting that boundary-trapped waves may account for the observed decline in variability in the coastal zone because they provide a mechanism for the fast equatorward export of transport anomalies associated with eddies impinging on the western boundary. An analytical model of linear Rossby waves suggests a simple scaling for the reduction in thermocline thickness variability toward the boundary. Physically, the reduction in amplitude is understood as along-boundary pressure gradients accelerating the fluid and rapidly propagating pressure anomalies along the boundary. The results suggest that the local eddy field does not dominate upper midocean transport or AMOC variability at 26.5 degrees N on interannual to decadal time scales.


Journal of Climate | 2006

Atlantic Climate Variability and Predictability: A CLIVAR Perspective

James W. Hurrell; Martin Visbeck; Antonio J. Busalacchi; R. A. Clarke; Thomas L. Delworth; Robert Dickson; William E. Johns; K. P. Koltermann; Yochanan Kushnir; David P. Marshall; C. Mauritzen; Michael S. McCartney; Alberto R. Piola; Chris J. C. Reason; Gilles Reverdin; Friedrich Schott; Rowan Sutton; Ilana Wainer; Daniel G. Wright

Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.


Journal of Physical Oceanography | 2001

On the Dynamics of Wind-Driven Circumpolar Currents

Claire E. Tansley; David P. Marshall

The factors controlling the transport of the Antarctic Circumpolar Current (ACC) have recently been a topic of heated debate. At the latitudes of Drake Passage, potential vorticity contours are uninterrupted by coastlines, and large amplitude flows are possible even with weak forcing and dissipation. The relationship between the dynamics of circumpolar currents and inertial recirculations in closed basins is discussed. In previous studies, Sverdrup balance and baroclinic adjustment theories have both been proposed as theories of the ACC transport. These theories predict the circumpolar transport as various simple functions of the surface wind stress. A series of experiments is performed with a simple channel model, with different wind strengths and different idealized basin geometries, to investigate the relationship between wind strength and circumpolar transport. The results show that baroclinic adjustment theories do predict transport in the special case of a periodic channel with no topographic variations, or when the wind forcing is very weak. More generally, the transport is determined by a complex interplay between wind forcing, eddy fluxes, and topographic effects. There is no support for the idea that Sverdrup balance determines the transport through Drake Passage.


Journal of Physical Oceanography | 2004

Global Teleconnections of Meridional Overturning Circulation Anomalies

H. L. Johnson; David P. Marshall

There is a wide range of evidence from both models and palaeoclimatic data that indicates the possibility of abrupt changes in the oceanic meridional overturning circulation (MOC). However, much of our dynamical understanding of the MOC comes from steady-state models that rely upon the assumption of thermodynamic equilibrium and are therefore only valid on millennial time scales. Here a dynamical model for the global teleconnections of MOC anomalies on annual to multidecadal time scales is developed. It is based on a linear theory for the propagation of zonally integrated meridional transport anomalies in a reduced-gravity ocean and allows for multiple ocean basins connected by a circumpolar channel to the south. The theory demonstrates that the equator acts as a low-pass filter to MOC anomalies. As a consequence, MOC anomalies on decadal and shorter time scales are confined to the hemispheric basin in which they are generated and have little impact on the remainder of the global ocean. The linear theory is compared with the results of a global nonlinear numerical integration, which it reproduces to a good approximation.

Collaboration


Dive into the David P. Marshall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Mak

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.W. Power

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zhai

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Fang

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge