Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David P. Noske is active.

Publication


Featured researches published by David P. Noske.


Cancer Cell | 2010

In Silico Analysis of Kinase Expression Identifies WEE1 as a Gatekeeper against Mitotic Catastrophe in Glioblastoma

Shahryar E. Mir; Philip C. De Witt Hamer; Przemek M. Krawczyk; Leonora Balaj; An Claes; Johanna M. Niers; Angela A.G. van Tilborg; Aeilko H. Zwinderman; Dirk Geerts; Gertjan J. L. Kaspers; W. Peter Vandertop; Jacqueline Cloos; Bakhos A. Tannous; Pieter Wesseling; Jacob A. Aten; David P. Noske; Cornelis J. F. Van Noorden; Thomas Wurdinger

Kinases execute pivotal cellular functions and are therefore widely investigated as potential targets in anticancer treatment. Here we analyze the kinase gene expression profiles of various tumor types and reveal the wee1 kinase to be overexpressed in glioblastomas. We demonstrate that WEE1 is a major regulator of the G(2) checkpoint in glioblastoma cells. Inhibition of WEE1 by siRNA or small molecular compound in cells exposed to DNA damaging agents results in abrogation of the G(2) arrest, premature termination of DNA repair, and cell death. Importantly, we show that the small-molecule inhibitor of WEE1 sensitizes glioblastoma to ionizing radiation in vivo. Our results suggest that inhibition of WEE1 kinase holds potential as a therapeutic approach in treatment of glioblastoma.


Cancer Cell | 2015

RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics

Myron G. Best; Nik Sol; Irsan E. Kooi; Jihane Tannous; Bart A. Westerman; François Rustenburg; Pepijn Schellen; Heleen Verschueren; Edward Post; Jan Koster; Bauke Ylstra; Najim Ameziane; Josephine C. Dorsman; Egbert F. Smit; Henk M.W. Verheul; David P. Noske; Jaap C. Reijneveld; R. Jonas A. Nilsson; Bakhos A. Tannous; Pieter Wesseling; Thomas Wurdinger

Summary Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based “liquid biopsies”.


Clinical Cancer Research | 2011

WEE1 Kinase Targeting Combined with DNA-Damaging Cancer Therapy Catalyzes Mitotic Catastrophe

Philip C. De Witt Hamer; Shahryar E. Mir; David P. Noske; Cornelis J. F. Van Noorden; Thomas Wurdinger

WEE1 kinase is a key molecule in maintaining G2–cell-cycle checkpoint arrest for premitotic DNA repair. Whereas normal cells repair damaged DNA during G1-arrest, cancer cells often have a deficient G1-arrest and largely depend on G2-arrest. The molecular switch for the G2–M transition is held by WEE1 and is pushed forward by CDC25. WEE1 is overexpressed in various cancer types, including glioblastoma and breast cancer. Preclinical studies with cancer cell lines and animal models showed decreased cancer cell viability, reduced tumor burden, and improved survival after WEE1 inhibition by siRNA or small molecule inhibitors, which is enhanced by combination with conventional DNA-damaging therapy, such as radiotherapy and/or cytostatics. Mitotic catastrophe results from premature entry into mitosis with unrepaired lethal DNA damage. As such, cancer cells become sensitized to conventional therapy by WEE1 inhibition, in particular those with insufficient G1-arrest due to deficient p53 signaling, like glioblastoma cells. One WEE1 inhibitor has now reached clinical phase I studies. Dose-limiting toxicity consisted of hematologic events, nausea and/or vomiting, and fatigue. The combination of DNA-damaging cancer therapy with WEE1 inhibition seems to be a rational approach to push cancer cells in mitotic catastrophe. Its safety and efficacy are being evaluated in clinical studies. Clin Cancer Res; 17(13); 4200–7. ©2011 AACR.


Blood | 2011

Blood platelets contain tumor-derived RNA biomarkers

R. Jonas A. Nilsson; Leonora Balaj; Esther Hulleman; Sjoerd van Rijn; D. Michiel Pegtel; Maudy Walraven; Anders Widmark; Winald R. Gerritsen; Henk M.W. Verheul; W. Peter Vandertop; David P. Noske; Johan Skog; Thomas Wurdinger

Diagnostic platforms providing biomarkers that are highly predictive for diagnosing, monitoring, and stratifying cancer patients are key instruments in the development of personalized medicine. We demonstrate that tumor cells transfer (mutant) RNA into blood platelets in vitro and in vivo, and show that blood platelets isolated from glioma and prostate cancer patients contain the cancer-associated RNA biomarkers EGFRvIII and PCA3, respectively. In addition, gene-expression profiling revealed a distinct RNA signature in platelets from glioma patients compared with normal control subjects. Because platelets are easily accessible and isolated, they may form an attractive platform for the companion diagnostics of cancer.


PLOS ONE | 2011

Down-Regulation of miR-101 in Endothelial Cells Promotes Blood Vessel Formation through Reduced Repression of EZH2

Michiel Smits; Shahryar E. Mir; R. Jonas A. Nilsson; Petra van der Stoop; Johanna M. Niers; Victor E. Marquez; Jacqueline Cloos; Xandra O. Breakefield; Anna M. Krichevsky; David P. Noske; Bakhos A. Tannous; Thomas Wurdinger

Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role.


The FASEB Journal | 2012

Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma.

Michiel Smits; Thomas Wurdinger; Bert van het Hof; Joost Drexhage; Dirk Geerts; Pieter Wesseling; David P. Noske; W. Peter Vandertop; Helga E. de Vries; Arie Reijerkerk

In patients with glioblastomas, vascular endothelial growth factor (VEGF) is a key mediator of tumor‐associated angiogenesis. Glioblastomas are notorious for their capacity to induce neovascularization, driving continued tumor growth. Here we report that miR‐125b is down‐regulated in glioblastoma‐associated endothelial cells, resulting in increased expression of its target, myc‐associated zinc finger protein (MAZ), a transcription factor that regulates VEGF. The down‐regulation of miR‐125b was also observed on exposure of endothelial cells to glioblastoma‐conditioned medium or VEGF, resulting in increased MAZ expression. Further analysis revealed that inhibition of MAZ accumulation by miR‐125b, or by MAZ‐specific shRNAs, attenuated primary human brain endothelial cell migration and tubule formation in vitro, phenomena considered to mimick angiogenic processes in vitro. Moreover, MAZ expression was elevated in brain blood vessels of glioblastoma patients. Altogether these results demonstrate a functional feed‐forward loop in glioblastoma‐related angiogenesis, in which VEGF inhibits the expression of miR‐125b, resulting in increased expression of MAZ, which in its turn causes transcriptional activation of VEGF. This loop is functionally impeded by the VEGF receptor inhibitor vandetanib, and our results may contribute to the further development of inhibitors of tumor‐angiogenesis.—Smits, M., Wurdinger, T., van het Hof, B., Drexhage, J. A. R., Geerts, D., Wesseling, P., Noske, D. P., Vandertop, W. P., de Vries, H. E., Reijerkerk, A. Myc‐associated zinc finger protein (MAZ) is regulated by miR‐125b and mediates VEGF‐induced angiogenesis in glioblastoma. FASEB J. 26, 2639‐2647 (2012). www.fasebj.org


Journal of the National Cancer Institute | 2013

Effects of the Selective MPS1 Inhibitor MPS1-IN-3 on Glioblastoma Sensitivity to Antimitotic Drugs

Bakhos A. Tannous; Mariam Kerami; Petra van der Stoop; Nicholas Kwiatkowski; Jinhua Wang; Wenjun Zhou; Almuth F. Kessler; Grant Lewandrowski; Lotte Hiddingh; Nik Sol; Tonny Lagerweij; Laurine E. Wedekind; Johanna M. Niers; Marco Barazas; R. Jonas A. Nilsson; Dirk Geerts; Philip C. De Witt Hamer; Carsten Hagemann; W. Peter Vandertop; Olaf van Tellingen; David P. Noske; Nathanael S. Gray; Thomas Wurdinger

BACKGROUND Glioblastomas exhibit a high level of chemotherapeutic resistance, including to the antimitotic agents vincristine and taxol. During the mitotic agent-induced arrest, glioblastoma cells are able to perform damage-control and self-repair to continue proliferation. Monopolar spindle 1 (MPS1/TTK) is a checkpoint kinase and a gatekeeper of the mitotic arrest. METHODS We used glioblastoma cells to determine the expression of MPS1 and to determine the effects of MPS1 inhibition on mitotic errors and cell viability in combination with vincristine and taxol. The effect of MPS1 inhibition was assessed in different orthotopic glioblastoma mouse models (n = 3-7 mice/group). MPS1 expression levels were examined in relation to patient survival. RESULTS Using publicly available gene expression data, we determined that MPS1 overexpression corresponds positively with tumor grade and negatively with patient survival (two-sided t test, P < .001). Patients with high MPS1 expression (n = 203) had a median and mean survival of 487 and 913 days (95% confidence intervals [CI] = 751 to 1075), respectively, and a 2-year survival rate of 35%, whereas patients with intermediate MPS1 expression (n = 140) had a median and mean survival of 858 and 1183 days (95% CI = 1177 to 1189), respectively, and a 2-year survival rate of 56%. We demonstrate that MPS1 inhibition by RNAi results in sensitization to antimitotic agents. We developed a selective small-molecule inhibitor of MPS1, MPS1-IN-3, which caused mitotic aberrancies in glioblastoma cells and, in combination with vincristine, induced mitotic checkpoint override, increased aneuploidy, and augmented cell death. MPS1-IN-3 sensitizes glioblastoma cells to vincristine in orthotopic mouse models (two-sided log-rank test, P < .01), resulting in prolonged survival without toxicity. CONCLUSIONS Our results collectively demonstrate that MPS1, a putative therapeutic target in glioblastoma, can be selectively inhibited by MPS1-IN-3 sensitizing glioblastoma cells to antimitotic drugs.


Molecular Imaging | 2009

Real-time monitoring of nuclear factor kappaB activity in cultured cells and in animal models.

Christian E. Badr; Johanna M. Niers; Lee-Ann Tjon-Kon-Fat; David P. Noske; Thomas Wurdinger; Bakhos A. Tannous

Nuclear factor κB (NF-κB) is a transcription factor that plays a major role in many human disorders, including immune diseases and cancer. We designed a reporter system based on NF-κB responsive promoter elements driving expression of the secreted Gaussia princeps luciferase (Gluc). We show that this bioluminescent reporter is a highly sensitive tool for noninvasive monitoring of the kinetics of NF-κB activation and inhibition over time, both in conditioned medium of cultured cells and in the blood and urine of animals. NF-κB activation was successfully monitored in real time in endothelial cells in response to tumor angiogenic signaling, as well as in monocytes in response to inflammation. Further, we demonstrated dual blood monitoring of both NF-κB activation during tumor development as correlated to tumor formation using the NF-κB Gluc reporter, as well as the secreted alkaline phosphatase reporter. This NF-κB reporter system provides a powerful tool for monitoring NF-κB activity in real time in vitro and in vivo.


Brain Pathology | 2011

Monitoring of tumor growth and post-irradiation recurrence in a diffuse intrinsic pontine glioma mouse model.

Viola Caretti; Ilse Zondervan; Dimphna H. Meijer; Sander Idema; Wim Vos; Bob Hamans; Marianna Bugiani; Esther Hulleman; Pieter Wesseling; W. Peter Vandertop; David P. Noske; Gertjan J. L. Kaspers; Carla F. M. Molthoff; Thomas Wurdinger

Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy because of its diffuse infiltrative growth pattern. Translational research suffers from the lack of a representative DIPG animal model. Hence, human E98 glioma cells were stereotactically injected into the pons of nude mice. The E98 DIPG tumors presented a strikingly similar histhopathology to autopsy material of a DIPG patient, including diffuse and perivascular growth, brainstem‐ and supratentorial invasiveness and leptomeningeal growth. Magnetic resonance imaging (MRI) was effectively employed to image the E98 DIPG tumor. [18F] 3′‐deoxy‐3′‐[18F]fluorothymidine (FLT) positron emission tomography (PET) imaging was applied to assess the subcutaneous (s.c.) E98 tumor proliferation status but no orthotopic DIPG activity could be visualized. Next, E98 cells were cultured in vitro and engineered to express firefly luciferase and mCherry (E98‐Fluc‐mCherry). These cultured E98‐Fluc‐mCherry cells developed focal pontine glioma when injected into the pons directly. However, the diffuse E98 DIPG infiltrative phenotype was restored when cells were injected into the pons immediately after an intermediate s.c. passage. The diffuse E98‐Fluc‐mCherry model was subsequently used to test escalating doses of irradiation, applying the bioluminescent Fluc signal to monitor tumor recurrence over time. Altogether, we here describe an accurate DIPG mouse model that can be of clinical relevance for testing experimental therapeutics in vivo.


Molecular Cancer Therapeutics | 2013

WEE1 Kinase Inhibition Enhances the Radiation Response of Diffuse Intrinsic Pontine Gliomas

Viola Caretti; Lotte Hiddingh; Tonny Lagerweij; Pepijn Schellen; Phil W. Koken; Esther Hulleman; Dannis G. van Vuurden; W. Peter Vandertop; Gertjan J. L. Kaspers; David P. Noske; Thomas Wurdinger

Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric disease. Thus far, no therapeutic agent has proven beneficial in the treatment of this malignancy. Therefore, conventional DNA-damaging radiotherapy remains the standard treatment, providing transient neurologic improvement without improving the probability of overall survival. During radiotherapy, WEE1 kinase controls the G2 cell-cycle checkpoint, allowing for repair of irradiation (IR)-induced DNA damage. Here, we show that WEE1 kinase is one of the highest overexpressed kinases in primary DIPG tissues compared with matching non-neoplastic brain tissues. Inhibition of WEE1 by MK-1775 treatment of DIPG cells inhibited the IR-induced WEE1-mediated phosphorylation of CDC2, resulting in reduced G2–M arrest and decreased cell viability. Finally, we show that MK-1775 enhances the radiation response of E98-Fluc-mCherry DIPG mouse xenografts. Altogether, these results show that inhibition of WEE1 kinase in conjunction with radiotherapy holds potential as a therapeutic approach for the treatment of DIPG. Mol Cancer Ther; 12(2); 141–50. ©2012 AACR.

Collaboration


Dive into the David P. Noske's collaboration.

Top Co-Authors

Avatar

Thomas Wurdinger

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

W. Peter Vandertop

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Esther Hulleman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter Wesseling

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tonny Lagerweij

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Cloos

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sander Idema

VU University Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge