David Palacios
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Palacios.
Geomorphology | 2003
David Palacios; Nuria Andrés; Enrique Luengo
Abstract Snow accumulation is responsible for geomorphic and biogeographic processes taking place in the southern sector of the Penalara massif in central Spain (40°51′N, 3°57′W; max. altitude 2428 m at Pico de Penalara). This work compares the intensity of nivation on the eastern slope, leeward of the prevailing westerly winds and heavily eroded by glacial activity during the Pleistocene, to that of the western slope on the windward side, unaffected by glacial erosion and completely covered by a thick weathering mantle. On the eastern slope, nivation is effective only where the weathering mantle is exposed or on morainic formations. It does not occur on the landforms derived from glacial erosion. In contrast, the western side shows almost no evidence of snow action except where catastrophic mass movements have altered the regularity of the slope. During the post-glacial epoch, nivation cirques formed in the scars left by mass wasting. In the last 30 years, spring temperatures have increased and this activity has diminished. The pattern of evolution observed at Penalara can be extrapolated to other Mediterranean mountains with similar characteristics such as marginal glacial activity during the Pleistocene, unconsolidated formations on the summits caused by chemical weathering, and dry, hot summers that can increase the effectiveness of nivation.
The Holocene | 2014
José María García-Ruiz; David Palacios; Nuria Andrés; Blas L. Valero-Garcés; Juan I. López-Moreno; Yasmina Sanjuán
The Marboré Cirque, which is located in the southern Central Pyrenees on the north face of the Monte Perdido Peak (42°40′0″N; 0.5°0″W; 3355 m), contains a wide variety of Holocene glacial and periglacial deposits, and those from the ‘Little Ice Age’ (‘LIA’) are particularly well developed. Based on geomorphological mapping, cosmogenic exposure dating and previous studies of lacustrine sediment cores, the different deposits were dated and a sequence of geomorphological and paleoenvironmental events was established as follows: (1) The Marboré Cirque was at least partially deglaciated before 12.7 kyr BP. (2) Some ice masses are likely to have persisted in the Early Holocene, although their moraines were destroyed by the advance of glaciers during the Mid Holocene and ‘LIA’. (3) A glacial expansion occurred during the Mid Holocene (5.1 ± 0.1 kyr), represented by a large push moraine that enclosed a unique ice mass at the foot of the Monte Perdido Massif. (4) A melting phase occurred at approximately 3.4 ± 0.2 and 2.5 ± 0.1 kyr (Bronze/Iron Ages) after one of the most important glacial advances of the Neoglacial period. (5) Another glacial expansion occurred during the Dark Age Cold Period (1.4–1.2 kyr), followed by a melting period during the Medieval Climate Anomaly. (6) The ‘LIA’ represented a clear stage of glacial expansion within the Marboré Cirque. Two different pulses of glaciation were detected, separated by a short retraction. The first pulse occurred most likely during the late 17th century or early 18th century (Maunder Minimum), whereas the second occurred between 1790 and ad 1830 (Dalton Minimum). A strong deglaciation process has affected the Marboré Cirque glaciers since the middle of the 19th century. (7) A large rock avalanche occurred during the Mid Holocene, leaving a chaotic deposit that was previously considered to be a Late Glacial moraine.
Geomorphology | 1999
David Palacios; Gemma Parrilla; José Juan Zamorano
The study area is located on the northern face of Pico de Orizaba (Mexico, 5700 m ASL), on the terminal moraine of Jamapa Glacier, which dates from the Little Ice Age. Large debris flows are recurrent on the proglacial ramp. The comparison of lichen colonies growing on the deposits of the flows reveals that two generations of flows are present: an old one and a very recent one that occurred between 1994 and 1995. Studies were made of the sedimentologic characteristics of the flows and ground temperatures were recorded to a depth of 70 cm on the floor of the channels. Comparison of the lichen-growth on the exposed surfaces of the deposits led to the relative dating of the older debris flow, which is associated with the beginning of the retreat of the glacier and the saturation of the terminal moraine deposits by meltwater. The more recent flow has less transport capacity and is identified with the formation of an impermeable layer of permafrost that covers the bottom of the channel of the old debris flow. The permafrost layer formed when snow accumulations on the bottom of the channel were covered by ash that fell from the slopes.
Geografiska Annaler Series A-physical Geography | 2003
Antonio Gómez; David Palacios; Enrique Luengo; Luis M. Tanarro; Lothar Schulte; Miguel Ramos
Abstract The southernmost glacier in Europe formed during the Little Ice Age at the foot of the north wall of Picacho del Veleta (3 398 m) in Sierra Nevada, in the southeast region of the Iberian Peninsula (lat. 37δ03‘N, long. 3δ22‘W). The glacier gradually retreated during the last century, leaving a large talus slope at the base of the wall. The unconsolidated material covering the ice masses acted as a thermal insulator. Recent bottom temperature of snow (BTS) analyses and drillings indicate that the ice still exists within the talus. Evidence from field observations made during the period 1995–2001, revealed that large mass movements occurred during the driest summers (1998 and especially, 1999 and 2000) when the talus was snow free. These conditions suggest a direct relationship between talus stability and thermal insulation from the snow cover in areas where buried ice or decaying marginal permafrost exists.
The Holocene | 2010
Michelle Bollschweiler; Markus Stoffel; Lorenzo Vázquez-Selem; David Palacios
Lahars represent a major threat on the slopes of volcanoes all over the world. In order to realistically assess hazards, knowledge on the occurrence and timing of past lahar activity is of crucial importance. However, archival data on past events is usually scarce or completely missing. Tree-ring records have repeatedly proved to be a reliable data source for the reconstruction of past geomorphic events. However, tree rings have seldom been applied for the identification of past lahars. Therefore, it was the aim of this study: (i) to identify and describe disturbances in tree growth induced by well-documented lahar events and on this basis; and (ii) to recognise older, unknown lahar events with tree-ring analyses. Based on these goals, we collected 140 tree-ring series from 62 trees (Abies religiosa, Pinus hartwegii and Pinus ayacahuite) standing inside or adjacent to the lahar channel in the Huiloac gorge at Popocatépetl volcano, central Mexico. Most commonly, the known lahar events of 1997 and 2001 resulted in abrupt changes in tree-ring width as well as injuries. The same growth disturbances could be identified in the tree-ring series, indicating that five previously unknown lahar events would have occurred during the 20th century. Popocatépetl is one of the best surveyed volcanoes in the world and past eruptions are precisely noted in archives. As most of these unknown events occurred during periods with no volcanic activity, we believe that they were rainfall-induced rather than related to volcanic activity. In order to assess rainfall intensity threshold values for the triggering of events, the analyses of meteorological data needs to be integrated. In general, the investigated tree species proved to be highly suitable for the reconstruction of mass-movement processes. Therefore, the applied methods can be transferred to other locations where data on past events are missing.
Geomorphology | 2001
David Palacios; José Juan Zamorano; Alberto Gómez
Abstract Popocatepetl (19°03′N, 98°35′W; 5450 m) is located 70 km southeast of Mexico City. The volcano resumed its eruptive activity in 1994 with emissions of pyroclasts that partially melted the glacier located on the north face. The sudden release of water generated large lahars that flowed downslope though proglacial gorges. This paper examines the geomorphologic evolution of these gorges since 1992 and focuses particularly on the landforms created by the most recent lahars of July 1997. The research suggests that the transport capacity of the lahars has increased despite the fact that the sediments they carry originate in deposits formed by earlier processes. The presence of continuous permafrost in the area is a key factor in the formation of lahars.
Catena | 2001
Leopoldo G. Sancho; David Palacios; Javier de Marcos; Fernando Valladares
Abstract This paper discusses the results of a lichenometrical and geomorphological study of one of the few remaining active snow hollows in the central region of the Iberian Peninsula. The study area, located on a glacial shoulder, is called Hoya del Cuchillar de las Navajas. A protalus rampart occurs at the base of the hollow. Our studies, conducted between 1992 and 1998, were designed to determine the geomorphological characteristics of Hoya, the mobility of the deposits, and the characteristics of the snow cover. These data formed the basis for a study of the lichen colonization on the blocks and on the wall surrounding the snow hollow. All of the lichen species found were analyzed according to their abundance, distribution and the extent of their surface cover. Measurements of the diameter of the thalli of the species Rhizocarpon geographicum were also obtained. Thalli of this species were found to require a mean snow-free growing season of at least 95 days (13.5 weeks) per year. Maximum mean thallus diameters indicate that the protalus rampart was formed during the Little Ice Age and became inactive 130 years ago.
Geografiska Annaler Series A-physical Geography | 2009
Antonio Gómez-Ortiz; David Palacios; Lothar Schulte; Ferran Salvador-Franch; Josep A. Plana‐Castellví
Abstract. The Sierra Nevada is the highest mountain system on the Iberian Peninsula (Mulhacén 3482 m; Veleta 3308 m) and is located in the extreme SE region of Spain (lat 37°N, long 3°W). Bibliographic resources, particularly from the eighteenth to twentieth centuries, provide insights into the changing summit landscape as the effects of cold, ice, snow and wind shaped its morphology. The selected references emphasize the Sierras evolving climate reflected in the glaciers and snow hollows, and in the sparse vegetation above certain altitudes. Scientists had established bioclimatic conditions for the entire range in the early nineteenth century, and their works reflect the progression of ideas, particularly in the area of natural sciences, that influenced the period chosen for this study. This information, in addition to current knowledge about the morphogenetic dynamics of the Sierra Nevada, provides the basis for a comparison of the dominant environments from the Little Ice Age to the present, using the most significant high mountain morphological features as a guide. The most relevant findings indicate that cold climate processes (soli‐gelifluction, frost creep and nivation) were more predominant during the eighteenth and nineteenth centuries than they are today.
Catena | 2003
David Palacios; Rosario Garcı́a; Virginia Rubio; Raquel Vigil
Abstract Sierra de Gredos is composed of Hercynian granitic rock, the parent material for a weathering mantle, which extends throughout the range except in the areas that were eroded by glaciers during the late Pleistocene. Recent debris flows have formed on the steep slopes covered by the weathering mantle, causing considerable destruction. This study analyzes the impact of the mantles structure and chemical composition on the formation and evolution of debris flows. The results show that the weathering mantle, despite its incipient state, is very thick in certain areas and that debris flows always originate here forming head scarps and channels that funnel the slope wash. This action leads to gullying, which quickly destroys the debris flow deposits and channels. Debris flows are influential in developing the drainage system in Sierra de Gredos, and the research suggests that debris flows occurring in other weathered granitic mountain ranges may have a similar impact.
PLOS ONE | 2014
María Arróniz-Crespo; Sergio Pérez-Ortega; Asunción de los Ríos; T. G. Allan Green; Raúl Ochoa-Hueso; Miguel Ángel Casermeiro; María Teresa de la Cruz; Ana Pintado; David Palacios; Ricardo Rozzi; Niklas Tysklind; Leopoldo G. Sancho
Bryophyte establishment represents a positive feedback process that enhances soil development in newly exposed terrain. Further, biological nitrogen (N) fixation by cyanobacteria in association with mosses can be an important supply of N to terrestrial ecosystems, however the role of these associations during post-glacial primary succession is not yet fully understood. Here, we analyzed chronosequences in front of two receding glaciers with contrasting climatic conditions (wetter vs drier) at Cordillera Darwin (Tierra del Fuego) and found that most mosses had the capacity to support an epiphytic flora of cyanobacteria and exhibited high rates of N2 fixation. Pioneer moss-cyanobacteria associations showed the highest N2 fixation rates (4.60 and 4.96 µg N g−1 bryo. d−1) very early after glacier retreat (4 and 7 years) which may help accelerate soil development under wetter conditions. In drier climate, N2 fixation on bryophyte-cyanobacteria associations was also high (0.94 and 1.42 µg N g−1 bryo. d−1) but peaked at intermediate-aged sites (26 and 66 years). N2 fixation capacity on bryophytes was primarily driven by epiphytic cyanobacteria abundance rather than community composition. Most liverworts showed low colonization and N2 fixation rates, and mosses did not exhibit consistent differences across life forms and habitat (saxicolous vs terricolous). We also found a clear relationship between cyanobacteria genera and the stages of ecological succession, but no relationship was found with host species identity. Glacier forelands in Tierra del Fuego show fast rates of soil transformation which imply large quantities of N inputs. Our results highlight the potential contribution of bryophyte-cyanobacteria associations to N accumulation during post-glacial primary succession and further describe the factors that drive N2-fixation rates in post-glacial areas with very low N deposition.