David Pamies
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Pamies.
ALTEX-Alternatives to Animal Experimentation | 2016
Nicholas Ball; Mark T. D. Cronin; Jie Shen; Karen Blackburn; Ewan D. Booth; Mounir Bouhifd; Elizabeth L.R. Donley; Laura A. Egnash; Charles Hastings; D.R. Juberg; Andre Kleensang; Nicole Kleinstreuer; E.D. Kroese; A.C. Lee; Thomas Luechtefeld; Alexandra Maertens; S. Marty; Jorge M. Naciff; Jessica A. Palmer; David Pamies; M. Penman; Andrea-Nicole Richarz; Daniel P. Russo; Sharon B. Stuard; G. Patlewicz; B. van Ravenzwaay; Shengde Wu; Hao Zhu; Thomas Hartung
Summary Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislation such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document presents the state of the art, summarizes insights learned from reviewing ECHA published decisions regarding the relative successes/pitfalls surrounding read-across under REACH, and compiles the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHAs published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data, and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015.
ALTEX-Alternatives to Animal Experimentation | 2016
Hao Zhu; Mounir Bouhifd; Elizabeth L.R. Donley; Laura A. Egnash; Nicole Kleinstreuer; E. Dinant Kroese; Zhichao Liu; Thomas Luechtefeld; Jessica A. Palmer; David Pamies; Jie Shen; Volker Strauss; Shengde Wu; Thomas Hartung
Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPAs ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.Summary Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA’s ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.
ALTEX-Alternatives to Animal Experimentation | 2008
Marcel Leist; Nina Hasiwa; Costanza Rovida; Mardas Daneshian; David A. Basketter; Ian Kimber; Harvey J. Clewell; Tilman Gocht; Alan M. Goldberg; Francois Busquet; Anna Rossi; Michael Schwarz; Martin L. Stephens; Rob Taalman; Thomas B. Knudsen; James M. McKim; Georgina Harris; David Pamies; Thomas Hartung
Since March 2013, animal use for cosmetics testing for the European market has been banned. This requires a renewed view on risk assessment in this field. However, in other fields as well, traditional animal experimentation does not always satisfy requirements in safety testing, as the need for human-relevant information is ever increasing. A general strategy for animal-free test approaches was outlined by the US National Research Council`s vision document for Toxicity Testing in the 21st Century in 2007. It is now possible to provide a more defined roadmap on how to implement this vision for the four principal areas of systemic toxicity evaluation: repeat dose organ toxicity, carcinogenicity, reproductive toxicity and allergy induction (skin sensitization), as well as for the evaluation of toxicant metabolism (toxicokinetics) (Fig. 1). CAAT-Europe assembled experts from Europe, America and Asia to design a scientific roadmap for future risk assessment approaches and the outcome was then further discussed and refined in two consensus meetings with over 200 stakeholders. The key recommendations include: focusing on improving existing methods rather than favoring de novo design; combining hazard testing with toxicokinetics predictions; developing integrated test strategies; incorporating new high content endpoints to classical assays; evolving test validation procedures; promoting collaboration and data-sharing of different industrial sectors; integrating new disciplines, such as systems biology and high throughput screening; and involving regulators early on in the test development process. A focus on data quality, combined with increased attention to the scientific background of a test method, will be important drivers. Information from each test system should be mapped along adverse outcome pathways. Finally, quantitative information on all factors and key events will be fed into systems biology models that allow a probabilistic risk assessment with flexible adaptation to exposure scenarios and individual risk factors.
Experimental Biology and Medicine | 2014
David Pamies; Thomas Hartung; Helena T. Hogberg
The desire to develop and evaluate drugs as potential countermeasures for biological and chemical threats requires test systems that can also substitute for the clinical trials normally crucial for drug development. Current animal models have limited predictivity for drug efficacy in humans as the large majority of drugs fails in clinical trials. We have limited understanding of the function of the central nervous system and the complexity of the brain, especially during development and neuronal plasticity. Simple in vitro systems do not represent physiology and function of the brain. Moreover, the difficulty of studying interactions between human genetics and environmental factors leads to lack of knowledge about the events that induce neurological diseases. Microphysiological systems (MPS) promise to generate more complex in vitro human models that better simulate the organ’s biology and function. MPS combine different cell types in a specific three-dimensional (3D) configuration to simulate organs with a concrete function. The final aim of these MPS is to combine different “organoids” to generate a human-on-a-chip, an approach that would allow studies of complex physiological organ interactions. The recent discovery of induced pluripotent stem cells (iPSCs) gives a range of possibilities allowing cellular studies of individuals with different genetic backgrounds (e.g., human disease models). Application of iPSCs from different donors in MPS gives the opportunity to better understand mechanisms of the disease and can be a novel tool in drug development, toxicology, and medicine. In order to generate a brain-on-a-chip, we have established a 3D model from human iPSCs based on our experience with a 3D rat primary aggregating brain model. After four weeks of differentiation, human 3D aggregates stain positive for different neuronal markers and show higher gene expression of various neuronal differentiation markers compared to 2D cultures. Here we present the applications and challenges of this emerging technology.
Toxicology Letters | 2014
Miguel A. Sogorb; David Pamies; Joaquín de Lapuente; Carmen Estevan; Jorge Estévez; E. Vilanova
The main available alternatives for testing embryotoxicity are cellular tests with stem cells and in vitro-ex vivo tests with embryos. In cellular tests, the most developed alternative is the embryonic stem cell test, while the most developed tests involving embryos are the zebrafish and whole embryo culture test. They are technically more complex than cellular tests, but offer the advantage of determining the expectable phenotypic alteration caused by the exposure. Many efforts are currently being made, basically through proteomic and genomic approaches, in order to obtain improvements in predictivity of these tests. Development is a very complex process, and it is highly unlikely that a single alternative test can yield satisfactory performance with all types of chemicals. We propose a step-wise approach where model complexity, and consequently technical skills and economical costs, gradually increase if needed. The first level would be run short cellular assays to detect effects in early differentiation stages. The second level would involve longer cellular embryotoxicity tests to search embryotoxicants that have an effect on late differentiation stages. The third stage would consider tests with embryos because they allow the determination of hazards based on molecular and morphological alterations, and not only on differentiating cells.
Stem Cell Research & Therapy | 2013
Helena T. Hogberg; Joseph P. Bressler; Kimberly M. Christian; Georgina Harris; Georgia Makri; Cliona O'Driscoll; David Pamies; Lena Smirnova; Zhexing Wen; Thomas Hartung
This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology.
International Journal of Developmental Neuroscience | 2013
Incoronata Laurenza; Giorgia Pallocca; Milena Mennecozzi; Bibiana Scelfo; David Pamies; Anna Bal-Price
The major advantage of the neuronal cell culture models derived from human stem cells is their ability to replicate the crucial stages of neurodevelopment such as the commitment of human stem cells to the neuronal lineage and their subsequent stages of differentiation into neuronal and glial‐like cell. In these studies we used mixed neuronal/glial culture derived from the NTERA‐2 (NT‐2) cell line, which has been established from human pluripotent testicular embryonal carcinoma cells. After characterization of the different stages of cell differentiation into neuronal‐ and glial‐like phenotype toxicity studies were performed to evaluate whether this model would be suitable for developmental neurotoxicity studies. The cells were exposed during the differentiation process to non‐cytotoxic concentrations of methylmercury chloride, lead chloride and aluminum nitrate for two weeks. The toxicity was then evaluated by measuring the mRNA levels of cell specific markers (neuronal and glial). The results obtained suggest that lead chloride and aluminum nitrate at low concentrations were toxic primarily to astrocytes and at the higher concentrations it also induced neurotoxicity. In contrast, MetHgCl was toxic for both cell types, neuronal and glial, as mRNA specific for astrocytes and neuronal markers were affected. The results obtained suggest that a neuronal mixed culture derived from human NT2 precursor cells is a suitable model for developmental neurotoxicity studies and gene expression could be used as a sensitive endpoint for initial screening of potential neurotoxic compounds.
ALTEX-Alternatives to Animal Experimentation | 2016
David Pamies; Paula Barreras; Katharina Block; Georgia Makri; Anupama Kumar; Daphne Wiersma; Lena Smirnova; Ce Zhang; Joseph P. Bressler; Kimberly M. Christian; Georgina Harris; Guo Li Ming; Cindy J. Berlinicke; Kelly Kyro; Hongjun Song; Carlos A. Pardo; Thomas Hartung; Helena T. Hogberg
Summary Human in vitro models of brain neurophysiology are needed to investigate molecular and cellular mechanisms associated with neurological disorders and neurotoxicity. We have developed a reproducible iPSC-derived human 3D brain microphysiological system (BMPS), comprised of differentiated mature neurons and glial cells (astrocytes and oligodendrocytes) that reproduce neuronal-glial interactions and connectivity. BMPS mature over eight weeks and show the critical elements of neuronal function: synaptogenesis and neuron-to-neuron (e.g., spontaneous electric field potentials) and neuronal-glial interactions (e.g., myelination), which mimic the microenvironment of the central nervous system, rarely seen in vitro before. The BMPS shows 40% overall myelination after 8 weeks of differentiation. Myelin was observed by immunohistochemistry and confirmed by confocal microscopy 3D reconstruction and electron microscopy. These findings are of particular relevance since myelin is crucial for proper neuronal function and development. The ability to assess oligodendroglial function and mechanisms associated with myelination in this BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating diseases. The BMPS provides a suitable and reliable model to investigate neuron-neuroglia function as well as pathogenic mechanisms in neurotoxicology.
ALTEX-Alternatives to Animal Experimentation | 2016
David Pamies; Anna Bal-Price; Anton Simeonov; Danilo A. Tagle; Dave Allen; David Gerhold; Dezhong Yin; Francesca Pistollato; Takashi Inutsuka; Kristie M. Sullivan; Glyn Stacey; Harry Salem; Marcel Leist; Mardas Daneshian; Mohan C. Vemuri; Richard McFarland; Sandra Coecke; Suzanne Fitzpatrick; Uma Lakshmipathy; Amanda Mack; Wen Bo Wang; Yamazaki Daiju; Yuko Sekino; Yasunari Kanda; Lena Smirnova; Thomas Hartung
The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.
Toxicology in Vitro | 2010
Miguel A. Sogorb; Iván González-González; David Pamies; E. Vilanova
Organophosphorus-induced delayed polyneuropathy (OPIDP) is a syndrome induced by certain organophosphorus compounds (OPs) through a mechanism based on the inhibition and further modification (aging) of neuropathy target esterase (NTE). OECD guidelines for testing the capability of OPs to trigger OPIDP include two in vivo tests with hens. Activities of acetylcholinesterase and NTE found in SH-SY5Y human neuroblastoma cells were inhibited by 10 different OPs with kinetics similar to those found with chicken brain enzymes (model system for in vivo and in vitro-ex vivo assays). NTE in SH-SY5Y cells inhibited by these OPs aged and reactivated similarly to that described for hen brain NTE ex vivo. In short, we have developed an alternative methodology for predicting the capability of OPs to induce OPIDP based on the inhibition kinetics of acetylcholinesterase and NTE and on the capability of OPs to age the inhibited NTE from SH-SY5Y cell line. The results obtained always agreed with the previously reported ex vivo results with hen brain. The developed methodology correctly predicted the neuropathic potential of the tested OPs in eight cases. The in vivo-in vitro discrepancies with two of the tested compounds can be explained on the basis of differences between in vivo and in vitro biotransformation.