Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Paul Jenkins is active.

Publication


Featured researches published by David Paul Jenkins.


Journal of Biological Chemistry | 2013

The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling

Dan Bi; Kazuyoshi Toyama; Vincent Lemaître; Jun Takai; Fan Fan; David Paul Jenkins; Heike Wulff; David D. Gutterman; Frank Park; Hiroto Miura

Background: The mechanism by which KCa3.1 regulates cell proliferation remains elusive. Results: KCa3.1 regulates the expression of transcription factors and cyclins by controlling intracellular calcium levels in activated vascular smooth muscle cells (VSMCs). Conclusion: KCa3.1 is an important regulator of the calcium-dependent proliferation machinery in VSMCs. Significance: KCa3.1 modulation constitutes a therapeutic target for cell proliferative diseases such as atherosclerosis. The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca2+ concentration ([Ca2+]i) and was enhanced by elevating [Ca2+]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca2+]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca2+]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca2+]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca2+-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis.


Molecular Pharmacology | 2011

Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro- 1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: Pharmacological evidence of deep-pore gating of KCa2 channels

David Paul Jenkins; Dorte Strøbæk; Charlotte Hougaard; Marianne L. Jensen; Rene Hummel; Ulrik Svane Sørensen; Palle Christophersen; Heike Wulff

Acting as a negative gating modulator, (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) shifts the apparent Ca2+-dependence of the small-conductance Ca2+-activated K+ channels KCa2.1–2.3 to higher Ca2+ concentrations. Similar to the positive KCa channel-gating modulators 1-ethyl-2-benzimidazolinone (1-EBIO) and cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methylpyrimidin-4-yl]-amine (CyPPA), the binding site for NS8593 has been assumed to be located in the C-terminal region, in which these channels interact with their Ca2+ sensor calmodulin. However, by using a progressive chimeric approach, we were able to localize the site-of-action of NS8593 to the KCa2 pore. For example, when we transferred the C terminus from the NS8593-insensitive intermediate-conductance KCa3.1 channel to KCa2.3, the chimeric channel remained as sensitive to NS8593 as wild-type KCa2.3. In contrast, when we transferred the KCa2.3 pore to KCa3.1, the channel became sensitive to NS8593. Using site-directed mutagenesis, we subsequently identified two specific residues in the inner vestibule of KCa2.3 (Ser507 and Ala532) that determined the effect of NS8593. Mutation of these residues to the corresponding residues in KCa3.1 (Thr250 and Val275) made KCa2.3 insensitive to NS8593, whereas introduction of serine and alanine into KCa3.1 was sufficient to render this channel highly sensitive to NS8593. It is noteworthy that the same two residue positions have been found previously to mediate sensitivity of KCa3.1 to clotrimazole and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34). The location of Ser507 in the pore-loop near the selectivity filter and Ala532 in an adjacent position in S6 are within the region predicted to contain the KCa2 channel gate. Hence, we propose that NS8593-mediated gating modulation occurs via interaction with gating structures at a position deep within the inner pore vestibule.


British Journal of Pharmacology | 2013

NS6180, a new KCa3.1 channel inhibitor prevents T‐cell activation and inflammation in a rat model of inflammatory bowel disease

Dorte Strøbæk; David T. Brown; David Paul Jenkins; Chen Yj; N. Coleman; Y. Ando; Peter Chiu; Susanne Jørgensen; Joachim Demnitz; Heike Wulff; Palle Christophersen

The KCa3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of KCa3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses.


International Journal of Alzheimer's Disease | 2012

Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

Izumi Maezawa; David Paul Jenkins; Benjamin E. Jin; Heike Wulff

There exists an urgent need for new target discovery to treat Alzheimers disease (AD); however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4), which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.


Biochemical Pharmacology | 2012

Purification, molecular cloning and functional characterization of HelaTx1 (Heterometrus laoticus): The first member of a new κ-KTX subfamily

Thomas Vandendriessche; Ivan Kopljar; David Paul Jenkins; Elia Diego-García; Yousra Abdel-Mottaleb; Elke Vermassen; Elke Clynen; Liliane Schoofs; Heike Wulff; Dirk J. Snyders; Jan Tytgat

Given their medical importance, most attention has been paid toward the venom composition of scorpions of the Buthidae family. Nevertheless, research has shown that the venom of scorpions of other families is also a remarkable source of unique peptidyl toxins. The κ-KTx family of voltage-gated potassium channel (VGPC) scorpion toxins is hereof an example. From the telson of the scorpion Heterometrus laoticus (Scorpionidae), a peptide, HelaTx1, with unique primary sequence was purified through HPLC and sequenced by Edman degradation. Based on the amino acid sequence, the peptide could be cloned and the cDNA sequence revealed. HelaTx1 was chemically synthesized and functionally characterized on VGPCs of the Shaker-related, Shab-related, Shaw-related and Shal-related subfamilies. Furthermore, the toxin was also tested on small- and intermediate conductance Ca(2+)-activated K(+) channels. From the channels studied, K(v)1.1 and K(v)1.6 were found to be the most sensitive (K(v)1.1 EC(50)=9.9±1.6 μM). The toxin did not alter the activation of the channels. Competition experiments with TEA showed that the toxin is a pore blocker. Mutational studies showed that the residues E353 and Y379 in the pore of K(v)1.1 act as major interaction points for binding of the toxin. Given the amino acid sequence, the predicted secondary structure and the biological activity on VGPCs, HelaTx1 should be included in the κ-KTX family. Based on a phylogenetic study, we rearranged this family of VGPC toxins into five subfamilies and suggest that HelaTx1 is the first member of the new κ-KTx5 subfamily.


Stroke | 2015

Blood–Brain Barrier KCa3.1 Channels Evidence for a Role in Brain Na Uptake and Edema in Ischemic Stroke

Yi Je Chen; Breanna K. Wallace; Natalie Yuen; David Paul Jenkins; Heike Wulff; Martha E. O'Donnell

Background and Purpose— KCa3.1, a calcium-activated potassium channel, regulates ion and fluid secretion in the lung and gastrointestinal tract. It is also expressed on vascular endothelium where it participates in blood pressure regulation. However, the expression and physiological role of KCa3.1 in blood–brain barrier (BBB) endothelium has not been investigated. BBB endothelial cells transport Na+ and Cl− from the blood into the brain transcellularly through the co-operation of multiple cotransporters, exchangers, pumps, and channels. In the early stages of cerebral ischemia, when the BBB is intact, edema formation occurs by processes involving increased BBB transcellular Na+ transport. This study evaluated whether KCa3.1 is expressed on and participates in BBB ion transport. Methods— The expression of KCa3.1 on cultured cerebral microvascular endothelial cells, isolated microvessels, and brain sections was evaluated by Western blot and immunohistochemistry. Activity of KCa3.1 on cerebral microvascular endothelial cells was examined by K+ flux assays and patch-clamp. Magnetic resonance spectroscopy and MRI were used to measure brain Na+ uptake and edema formation in rats with focal ischemic stroke after TRAM-34 treatment. Results— KCa3.1 current and channel protein were identified on bovine cerebral microvascular endothelial cells and freshly isolated rat microvessels. In situ KCa3.1 expression on BBB endothelium was confirmed in rat and human brain sections. TRAM-34 treatment significantly reduced Na+ uptake, and cytotoxic edema in the ischemic brain. Conclusions— BBB endothelial cells exhibit KCa3.1 protein and activity and pharmacological blockade of KCa3.1 seems to provide an effective therapeutic approach for reducing cerebral edema formation in the first 3 hours of ischemic stroke.


Molecular Pharmacology | 2014

Nanomolar Bifenthrin Alters Synchronous Ca2+ Oscillations and Cortical Neuron Development Independent of Sodium Channel Activity

Zhengyu Cao; Yanjun Cui; Hai M. Nguyen; David Paul Jenkins; Heike Wulff; Isaac N. Pessah

Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca2+ oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca2+ indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na+ current, nor did it influence neuronal resting membrane potential. The L-type Ca2+ channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na+ channel modification. Competitive [AP-5; (−)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element–binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV–enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca2+ dynamics and Ca2+-dependent signaling in cortical neurons that have long term impacts on activity driven neuronal plasticity.


Assay and Drug Development Technologies | 2013

Development of a QPatch Automated Electrophysiology Assay for Identifying KCa3.1 Inhibitors and Activators

David Paul Jenkins; Weifeng Yu; Brandon M. Brown; Lars Damgaard Løjkner; Heike Wulff

The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca(2+) sensitivity of KCa3.1 was studied using varying intracellular Ca(2+) concentrations. A free Ca(2+) concentration of 1 μM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca(2+) concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay.


Frontiers in Pharmacology | 2012

Triarylmethanes, a new class of Cx50 inhibitors

Silke B. Bodendiek; Clio Rubinos; Maria Pilar Trelles; Nichole Coleman; David Paul Jenkins; Heike Wulff; Miduturu Srinivas

The paucity of specific pharmacological agents has been a major impediment for delineating the roles of gap junction (GJ) channels formed by connexin proteins in physiology and pathophysiology. Here, we used the selective optimization of side activities (SOSA) approach, which has led to the design of high affinity inhibitors of other ion channels, to identify a specific inhibitor for channels formed by Cx50, a connexin subtype that is primarily expressed in the lens. We initially screened a library of common ion channel modulating pharmacophores for their inhibitory effects on Cx50 GJ channels, and identified four new classes of compounds. The triarlymethane (TRAM) clotrimazole was the most potent Cx50 inhibitor and we therefore used it as a template to explore the structure activity relationship (SAR) of the TRAMs for Cx50 inhibition. We describe the design of T122 (N-[(2-methoxyphenyl)diphenylmethyl]-1,3-thiazol-2-amine) and T136 (N-[(2-iodophenyl)diphenylmethyl]-1,3-thiazol-2-amine), which inhibit Cx50 with IC50s of 1.2 and 2.4 μM. Both compounds exhibit at least 10-fold selectivity over other connexins as well as major neuronal and cardiac voltage-gated K+ and Na+ channels. The SAR studies also indicated that the TRAM pharmacophore required for connexin inhibition is significantly different from the pharmacophore required for blocking the calcium-activated KCa3.1 channel. Both T122 and T136 selectively inhibited Cx50 GJ channels in lens epithelial cells, suggesting that they could be used to further explore the role of Cx50 in the lens. In addition, our results indicate that a similar approach may be used to find specific inhibitors of other connexin subtypes.


Molecular Pharmacology | 2017

Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore

Hai M. Nguyen; Vikrant Singh; Brandon Pressly; David Paul Jenkins; Heike Wulff; Vladimir Yarov-Yarovoy

The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) constitutes an attractive pharmacological target for immunosuppression, fibroproliferative disorders, atherosclerosis, and stroke. However, there currently is no available crystal structure of this medically relevant channel that could be used for structure-assisted drug design. Using the Rosetta molecular modeling suite we generated a molecular model of the KCa3.1 pore and tested the model by first confirming previously mapped binding sites and visualizing the mechanism of TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole), senicapoc (2,2-bis-(4-fluorophenyl)-2-phenylacetamide), and NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) inhibition at the atomistic level. All three compounds block ion conduction directly by fully or partially occupying the site that would normally be occupied by K+ before it enters the selectivity filter. We then challenged the model to predict the receptor sites and mechanisms of action of the dihydropyridine nifedipine and an isosteric 4-phenyl-pyran. Rosetta predicted receptor sites for nifedipine in the fenestration region and for the 4-phenyl-pyran in the pore lumen, which could both be confirmed by site-directed mutagenesis and electrophysiology. While nifedipine is thus not a pore blocker and might be stabilizing the channel in a nonconducting conformation or interfere with gating, the 4-phenyl-pyran was found to be a classical pore blocker that directly inhibits ion conduction similar to the triarylmethanes TRAM-34 and senicapoc. The Rosetta KCa3.1 pore model explains the mechanism of action of several KCa3.1 blockers at the molecular level and could be used for structure-assisted drug design.

Collaboration


Dive into the David Paul Jenkins's collaboration.

Top Co-Authors

Avatar

Heike Wulff

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai M. Nguyen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Izumi Maezawa

University of California

View shared research outputs
Top Co-Authors

Avatar

N. Coleman

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge