Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Platt.
Biochemical Journal | 2009
Michelle C. Miller; Irina V. Nesmelova; David Platt; Anatole Klyosov; Kevin H. Mayo
gal-1 (galectin-1) mediates cell–cell and cell–extracellular matrix adhesion, essentially by interacting with β-galactoside-containing glycans of cell-surface glycoconjugates. Although most structural studies with gal-1 have investigated its binding to simple carbohydrates, in particular lactose and N-acetyl-lactosamine, this view is limited, because gal-1 functions at the cell surface by interacting with more complex glycans that are heterogeneous in size and composition. In the present study we used NMR spectroscopy to investigate the interaction of human gal-1 with a large (120 kDa) complex glycan, GRG (galactorhamnogalacturonate glycan), that contains non-randomly distributed mostly terminal β(1→4)-linked galactose side chains. We used 15N–1H-HSQC (heteronuclear single quantum coherence) NMR experiments with 15N-enriched gal-1 to identify the GRG-binding region on gal-1 and found that this region covers a large surface area on gal-1 that includes the quintessential lactose-binding site and runs from that site through a broad valley or cleft towards the dimer interface. HSQC and pulsed-field-gradient NMR diffusion experiments also show that gal-1 binds GRG with a gal-1:GRG stoichiometry of about 5:1 (or 6:1) and with average macroscopic and microscopic equilibrium dissociation constants (Kd) of 8×10−6 M and 40×10−6 M (or 48×10−6 M) respectively, indicating stronger binding than to lactose (Kd=520×10−6 M). Although gal-1 may bind GRG in various ways, the glycan can be competed for by lactose, suggesting that there is one major mode of interaction. Furthermore, even though terminal motifs on GRG are Gal-β(1→4)-Gal rather than the traditional Gal-β(1→4)-Glc/GlcNAc (where GlcNAc is N-acetylglucosamine), we show that the disaccharide Gal-β(1→4)-Gal can bind gal-1 at the lactose-binding domain. In addition, gal-1 binding to GRG disrupts inter-glycan interactions and decreases glycan-mediated solution viscosity, a glycan decongestion effect that may help explain why gal-1 promotes membrane fluidity and lateral diffusion of glycoconjugates within cell membranes. Overall, our results provide an insight into the function of galectin in situ and have potential significant biological consequences.
Carbohydrate Research | 2009
Michelle C. Miller; Anatole Klyosov; David Platt; Kevin H. Mayo
Glycans comprise perhaps the largest biomass in nature, and more and more glycans are used in a number of applications, including those as pharmaceutical agents in the clinic. However, defining glycan molecular weight distributions during and after their preparation is not always straightforward. Here, we use pulse field gradient (PFG) (1)H NMR self-diffusion measurements to assess molecular weight distributions in various glycan preparations. Initially, we derived diffusion coefficients, D, on a series of dextrans with reported weight-average molecular weights from about 5 kDa to 150 kDa. For each dextran sample, we analyzed 15 diffusion decay curves, one from each of the 15 major (1)H resonance envelopes, to provide diffusion coefficients. By measuring D as a function of dextran concentration, we determined D at infinite dilution, D(inf), which allowed estimation of the hydrodynamic radius, R(h), using the Stokes-Einstein relationship. A plot of log D(inf) versus log R(h) was linear and provided a standard calibration curve from which R(h) is estimated for other glycans. We then applied this methodology to investigate two other glycans, an alpha-(1-->2)-L-rhamnosyl-alpha-(1-->4)-D-galacturonosyl with quasi-randomly distributed, mostly terminal beta(1-->4)-linked galactose side-chains (GRG) and an alpha(1-->6)-D-galacto-beta(1-->4)-D-mannan (Davanat), which is presently being tested against cancer in the clinic. Using the dextran-derived calibration curve, we find that average R(h) values for GRG and Davanat are 76+/-6 x 10(-10) m and 56+/-3 x 10(-10) m, with GRG being more polydispersed than Davanat. Results from this study will be useful to investigators requiring knowledge of polysaccharide dispersity, needing to study polysaccharides under various solution conditions, or wanting to follow degradation of polysaccharides during production.
Archive | 2006
Anatole Klyosov; Zbigniew J. Witczak; David Platt
Archive | 2001
Anatole Klyosov; David Platt
Archive | 2007
David Platt; Eliezer Zomer; Anatole Klyosov
Carbohydrate Research | 2003
Eugenia N. Olsufyeva; Anna N. Tevyashova; Ivan D. Trestchalin; M. N. Preobrazhenskaya; David Platt; Anatole Klyosov
Archive | 2002
David Platt; Anatole Klyosov; Eliezer Zomer
Archive | 2003
Anatole Klyosov; David Platt
Archive | 2001
Anatole Klyosov; David Platt
Archive | 2013
Anatole Klyosov; Eliezer Zomer; David Platt