Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Polidori is active.

Publication


Featured researches published by David Polidori.


Diabetes Care | 2012

Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes.

Julio Rosenstock; Naresh Aggarwal; David Polidori; Yue Zhao; Deborah Arbit; Keith Usiskin; George Capuano; William Canovatchel

OBJECTIVE To evaluate the effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in type 2 diabetes mellitus inadequately controlled with metformin monotherapy. RESEARCH DESIGN AND METHODS This was a double-blind, placebo-controlled, parallel-group, multicenter, dose-ranging study in 451 subjects randomized to canagliflozin 50, 100, 200, or 300 mg once daily (QD) or 300 mg twice daily (BID), sitagliptin 100 mg QD, or placebo. Primary end point was change in A1C from baseline through week 12. Secondary end points included change in fasting plasma glucose (FPG), body weight, and overnight urinary glucose-to-creatinine ratio. Safety and tolerability were also assessed. RESULTS Canagliflozin was associated with significant reductions in A1C from baseline (7.6–8.0%) to week 12: −0.79, −0.76, −0.70, −0.92, and −0.95% for canagliflozin 50, 100, 200, 300 mg QD and 300 mg BID, respectively, versus −0.22% for placebo (all P < 0.001) and −0.74% for sitagliptin. FPG was reduced by −16 to −27 mg/dL, and body weight was reduced by −2.3 to −3.4%, with significant increases in urinary glucose-to-creatinine ratio. Adverse events were transient, mild to moderate, and balanced across arms except for a non–dose-dependent increase in symptomatic genital infections with canagliflozin (3–8%) versus placebo and sitagliptin (2%). Urinary tract infections were reported without dose dependency in 3–9% of canagliflozin, 6% of placebo, and 2% of sitagliptin arms. Overall incidence of hypoglycemia was low. CONCLUSIONS Canagliflozin added onto metformin significantly improved glycemic control in type 2 diabetes and was associated with low incidence of hypoglycemia and significant weight loss. The safety/tolerability profile of canagliflozin was favorable except for increased frequency of genital infections in females.


Diabetes Care | 2013

Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion: Results of a randomized, placebo-controlled study

David Polidori; Sue Sha; Sunder Mudaliar; Theodore P. Ciaraldi; Atalanta Ghosh; Nicole Vaccaro; Kristin Farrell; Paul Rothenberg; Robert R. Henry

OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, 3H-glucose, 14C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal. RESULTS Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0–2h] reductions of 35% and 43%, respectively; P < 0.001 for both), increased 0- to 6-h urinary glucose excretion (UGE0–6h, 18.2 ± 5.6 vs. <0.2 g; P < 0.001), and delayed RaO. Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P < 0.001) and by 20% over 0 to 2 h (576 vs. 723 mg/kg; P = 0.002). Over 2 to 6 h, canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was <6% lower versus placebo (960 vs. 1,018 mg/kg; P = 0.003). A modest (∼10%) reduction in acetaminophen absorption was observed over the first 2 h, but this difference was not sufficient to explain the reduction in RaO. Total glucose disposal over 0 to 6 h was similar across groups. CONCLUSIONS Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition.


The Journal of Clinical Pharmacology | 2013

Pharmacokinetics and Pharmacodynamics of Canagliflozin, a Sodium Glucose Co‐Transporter 2 Inhibitor, in Subjects With Type 2 Diabetes Mellitus

Damayanthi Devineni; Christopher R. Curtin; David Polidori; Maria J. Gutierrez; Joseph Murphy; Sarah Rusch; Paul Rothenberg

This study characterized single‐ and multiple‐dose pharmacokinetics of canagliflozin and its O‐glucuronide metabolites (M5 and M7) and pharmacodynamics (renal threshold for glucose [RTG], urinary glucose excretion [UGE0–24h], and 24‐hour mean plasma glucose [MPG0–24h]) of canagliflozin in subjects with type 2 diabetes. Thirty‐six randomized subjects received canagliflozin 50, 100, or 300 mg/day or placebo for 7 days. On Days 1 and 7, area under the plasma concentration‐time curve and maximum observed plasma concentration (Cmax) for canagliflozin and its metabolites increased dose‐dependently. Half‐life and time at which Cmax was observed were dose‐independent. Systemic molar M5 exposure was half that of canagliflozin; M7 exposure was similar to canagliflozin. Steady‐state plasma canagliflozin concentrations were reached by Day 4 in all active treatment groups. Pharmacodynamic effects were dose‐ and exposure‐dependent. All canagliflozin doses decreased RTG, increased UGE0–24h, and reduced MPG0–24h versus placebo on Days 1 and 7. On Day 7, placebo‐subtracted least‐squares mean decreases in MPG0–24h ranged from 42–57 mg/dL with canagliflozin treatment. Adverse events (AEs) were balanced between treatments; no treatment‐related serious AEs, AE‐related discontinuations, or clinically meaningful adverse changes in routine safety evaluations occurred. The observed pharmacokinetic/pharmacodynamic profile of canagliflozin in subjects with type 2 diabetes supports a once‐daily dosing regimen.


The Journal of Clinical Endocrinology and Metabolism | 2016

Evaluation of Bone Mineral Density and Bone Biomarkers in Patients With Type 2 Diabetes Treated With Canagliflozin

John P. Bilezikian; Nelson B. Watts; Keith Usiskin; David Polidori; Albert Fung; Daniel Sullivan; Norm Rosenthal

CONTEXT Canagliflozin is a sodium glucose cotransporter 2 inhibitor developed to treat type 2 diabetes mellitus (T2DM). OBJECTIVE Our objective is to describe the effects of canagliflozin on bone mineral density (BMD) and bone biomarkers in patients with T2DM. DESIGN This was a randomized study, consisting of a 26-week, double-blind, placebo-controlled period and a 78-week, double-blind, placebo-controlled extension. SETTING This study was undertaken in 90 centers in 17 countries. PATIENTS Patients were aged 55-80 years (N = 716) and whose T2DM was inadequately controlled on a stable antihyperglycemic regimen. INTERVENTIONS Canagliflozin 100 or 300 mg or placebo were administered once daily. OUTCOME AND MEASURES BMD was assessed using dual-energy x-ray absorptiometry at weeks 26, 52, and 104. Bone strength was assessed using quantitative computed tomography and finite element analysis at week 52. Serum collagen type 1 β-carboxy-telopeptide, osteocalcin, and estradiol were assessed at weeks 26 and 52. RESULTS Canagliflozin doses of 100 and 300 mg were associated with a decrease in total hip BMD over 104 weeks, (placebo-subtracted changes: -0.9% and -1.2%, respectively), but not at other sites measured (femoral neck, lumbar spine, or distal forearm). No meaningful changes in bone strength were observed. At week 52, canagliflozin was associated with an increase in collagen type 1 β-carboxy-telopeptide that was significantly correlated with a reduction in body weight, an increase in osteocalcin, and, in women, a decrease in estradiol. CONCLUSIONS In older patients with T2DM, canagliflozin showed small but significant reductions in total hip BMD and increases in bone formation and resorption biomarkers, due at least in part to weight loss.


Diabetes Care | 2015

Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport From Bench to Bedside

Sunder Mudaliar; David Polidori; Brian Zambrowicz; Robert R. Henry

Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium–glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors.


Diabetes, Obesity and Metabolism | 2014

Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus

Sue Sha; David Polidori; Tim Heise; Jaya Natarajan; K. Farrell; Shean-Sheng Wang; D. Sica; Paul Rothenberg; Leona Plum-Mörschel

To evaluate the effects of canagliflozin on plasma volume, urinary glucose excretion (UGE), fasting plasma glucose (FPG), glycated haemoglobin (HbA1c) and additional measures of fluid/electrolyte balance in patients with type 2 diabetes on background therapy with metformin and angiotensin‐converting enzyme inhibitors or angiotensin receptor blockers.


Diabetes Care | 2015

Efficacy and Safety of Canagliflozin, a Sodium-Glucose Cotransporter 2 Inhibitor, as Add-on to Insulin in Patients With Type 1 Diabetes.

Robert R. Henry; Payal Thakkar; Cindy Tong; David Polidori; Maria Alba

OBJECTIVE This study assessed the efficacy and safety of canagliflozin, a sodium–glucose cotransporter 2 inhibitor, as add-on to insulin in adults with type 1 diabetes. RESEARCH DESIGN AND METHODS This 18-week, double-blind, phase 2 study randomized 351 patients (HbA1c 7.0–9.0% [53–75 mmol/mol]) on multiple daily insulin injections or continuous subcutaneous insulin infusion to canagliflozin 100 or 300 mg or placebo. The primary end point was the proportion of patients achieving at week 18 both HbA1c reduction from baseline of ≥0.4% (≥4.4 mmol/mol) and no increase in body weight. Other end points included changes in HbA1c, body weight, and insulin dose, as well as hypoglycemia incidence. Safety was assessed by adverse event (AE) reports. RESULTS More patients had both HbA1c reduction ≥0.4% and no increase in body weight with canagliflozin 100 and 300 mg versus placebo at week 18 (36.9%, 41.4%, 14.5%, respectively; P < 0.001). Both canagliflozin doses provided reductions in HbA1c, body weight, and insulin dose versus placebo over 18 weeks. The incidence of hypoglycemia was similar across groups; severe hypoglycemia rates were low (1.7–6.8%). Overall incidence of AEs was 55.6%, 67.5%, and 54.7% with canagliflozin 100 and 300 mg and placebo; discontinuation rates were low (0.9–1.3%). Increased incidence of ketone-related AEs (5.1%, 9.4%, 0%), including the specific AE of diabetic ketoacidosis (DKA) (4.3%, 6.0%, 0%), was seen with canagliflozin 100 and 300 mg versus placebo. CONCLUSIONS Canagliflozin provided reductions in HbA1c, body weight, and insulin dose with no increase in hypoglycemia, but increased rates of ketone-related AEs, including DKA, in adults with type 1 diabetes inadequately controlled with insulin.


The Journal of Clinical Endocrinology and Metabolism | 2013

Validation of a Novel Method for Determining the Renal Threshold for Glucose Excretion in Untreated and Canagliflozin-treated Subjects With Type 2 Diabetes Mellitus

David Polidori; Sue Sha; Atalanta Ghosh; Leona Plum-Mörschel; Tim Heise; Paul Rothenberg

Context: The stepwise hyperglycemic clamp procedure (SHCP) is the gold standard for measuring the renal threshold for glucose excretion (RTG), but its use is limited to small studies in specialized laboratories. Objective: The objective of the study was to validate a new method for determining RTG using data obtained during a mixed-meal tolerance test (MMTT) in untreated and canagliflozin-treated subjects with type 2 diabetes mellitus (T2DM). Design: This was an open-label study with 2 sequential parts. Setting: The study was performed at a single center in Germany. Patients: Twenty-eight subjects with T2DM were studied. Interventions: No treatment intervention was given in part 1. In part 2, subjects were treated with canagliflozin 100 mg/d for 8 days. In each part, subjects underwent an MMTT and a 5-step SHCP on consecutive days. Main Outcome Measures: For both methods, RTG was estimated using measured blood glucose (BG) and urinary glucose excretion (UGE); estimated glomerular filtration rates were also used to determine RTG during the MMTT. The methods were compared using the concordance correlation coefficient and geometric mean ratios. Results: In untreated and canagliflozin-treated subjects, the relationship between UGE rate and BG was well described by a threshold relationship. Good agreement was obtained between the MMTT-based and SHCP-derived RTG values. The concordance correlation coefficient (for all subjects) was 0.94; geometric mean ratios (90% confidence intervals) for RTG values (MMTT/SHCP) were 0.93 (0.89–0.96) in untreated subjects and 1.03 (0.78–1.37) in canagliflozin-treated subjects. Study procedures and treatments were generally well tolerated in untreated and canagliflozin-treated subjects. Conclusions: In both untreated and canagliflozin-treated subjects with T2DM, RTG can be accurately estimated from measured BG, UGE, and estimated glomerular filtration rates using an MMTT-based method.


Annals of the New York Academy of Sciences | 2015

Canagliflozin: a sodium glucose co‐transporter 2 inhibitor for the treatment of type 2 diabetes mellitus

Norm Rosenthal; Gary Meininger; Kirk Ways; David Polidori; Mehul Desai; Rong Qiu; Maria Alba; Frank Vercruysse; Dainius Balis; Wayne Shaw; Robert Edwards; Scott Bull; Nicholas A. Di Prospero; Sue Sha; Paul Rothenberg; William Canovatchel; Keith T. Demarest

The sodium glucose co‐transporter 2 (SGLT2) inhibitor canagliflozin is a novel treatment option for adults with type 2 diabetes mellitus (T2DM). In patients with hyperglycemia, SGLT2 inhibition lowers plasma glucose levels by reducing the renal threshold for glucose (RTG) and increasing urinary glucose excretion (UGE). Increased UGE is also associated with a mild osmotic diuresis and net caloric loss, which can lead to reductions in body weight and blood pressure (BP). After promising results from preclinical and phase I/II studies, the efficacy and safety of canagliflozin was evaluated in a comprehensive phase III development program in over 10,000 patients with T2DM on various background therapies. Canagliflozin improved glycemic control and provided reductions in body weight and BP versus placebo and active comparators in studies of up to 2 years’ duration. Canagliflozin was generally well tolerated, with higher incidences of adverse events (AEs) related to the mechanism of action, including genital mycotic infections and AEs related to osmotic diuresis. Results from the preclinical and clinical studies led canagliflozin to be the first‐in‐class SGLT2 inhibitor approved in the United States, and support canagliflozin as a safe and effective therapeutic option across a broad range of patients with T2DM.


Diabetes, Obesity and Metabolism | 2015

Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study.

Sue Sha; David Polidori; Kristin Farrell; Atalanta Ghosh; Jaya Natarajan; Nicole Vaccaro; J. Pinheiro; Paul Rothenberg; Leona Plum-Mörschel

To compare the pharmacodynamic effects of the highest approved doses of the sodium glucose co‐transporter 2 (SGLT2) inhibitors canagliflozin and dapagliflozin on urinary glucose excretion (UGE), renal threshold for glucose excretion (RTG) and postprandial plasma glucose (PPG) excursion in healthy participants in a randomized, double‐blind, two‐period crossover study.

Collaboration


Dive into the David Polidori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue Sha

Janssen Pharmaceutica

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard N. Bergman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Wajs

Janssen Pharmaceutica

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge