David Posé
University of Málaga
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Posé.
Nature | 2013
David Posé; Leonie Verhage; Felix Ott; Levi Yant; Johannes Mathieu; Gerco C. Angenent; Richard G. H. Immink; Markus Schmid
The appropriate timing of flowering is crucial for plant reproductive success. It is therefore not surprising that intricate genetic networks have evolved to perceive and integrate both endogenous and environmental signals, such as carbohydrate and hormonal status, photoperiod and temperature. In contrast to our detailed understanding of the vernalization pathway, little is known about how flowering time is controlled in response to changes in the ambient growth temperature. In Arabidopsis thaliana, the MADS-box transcription factor genes FLOWERING LOCUS M (FLM) and SHORT VEGETATIVE PHASE (SVP) have key roles in this process. FLM is subject to temperature-dependent alternative splicing. Here we report that the two main FLM protein splice variants, FLM-β and FLM-δ, compete for interaction with the floral repressor SVP. The SVP–FLM-β complex is predominately formed at low temperatures and prevents precocious flowering. By contrast, the competing SVP–FLM-δ complex is impaired in DNA binding and acts as a dominant-negative activator of flowering at higher temperatures. Our results show a new mechanism that controls the timing of the floral transition in response to changes in ambient temperature. A better understanding of how temperature controls the molecular mechanisms of flowering will be important to cope with current changes in global climate.
Science | 2013
Jeong Hwan Lee; Hak Seung Ryu; Kyung Sook Chung; David Posé; Soonkap Kim; Markus Schmid; Ji Hoon Ahn
Chilly Repression Stalls Flowering In a cool spring, flowering might be delayed compared to a warm spring, even though the change in day length marches on regardless of temperature. Lee et al. (p. 628, published online 12 September; see the Perspective by Nilsson) now show that this delay in flowering is a regulated process, not simply a consequence of sluggish metabolism. In the model plant Arabidopsis, transcription of the gene encoding the regulator SHORT VEGETATIVE PHASE (SVP) is unaffected by temperature, but the stability of the SVP protein is decreased at higher temperatures. Its regulatory partner, FLOWERING LOCUS M (FLM)-β, is the product of alternative splicing of transcripts from the gene encoding FLM that favors the β form at lower temperatures. SVP and FLM-β form a complex that represses flowering. At lower temperatures, more of the repressive complex is present and flowering is delayed. At higher temperatures, SVP tends to degrade and FLM-β tends not to be produced, yielding reduced levels of the repressive complex, which allows flowering to proceed. A warm spring favors early flowering by invoking less transcriptional repression by a floral repressor complex. [Also see Perspective by Nilsson] Changes in ambient temperature affect flowering time in plants; understanding this phenomenon will be crucial for buffering agricultural systems from the effects of climate change. Here, we show that levels of FLM-β, an alternatively spliced form of the flowering repressor FLOWERING LOCUS M, increase at lower temperatures, repressing flowering. FLM-β interacts with SHORT VEGETATIVE PHASE (SVP); SVP is degraded at high temperatures, reducing the abundance of the SVP–FLM-β repressor complex and, thus, allowing the plant to flower. The svp and flm mutants show temperature-insensitive flowering in different temperature ranges. Control of SVP–FLM-β repressor complex abundance via transcriptional and splicing regulation of FLM and posttranslational regulation of SVP protein stability provides an efficient, rapid mechanism for plants to respond to ambient temperature changes.
The Plant Cell | 2011
Edwige Moyroud; Eugenio G. Minguet; Felix Ott; Levi Yant; David Posé; Marie Monniaux; Sandrine Blanchet; Olivier Bastien; Emmanuel Thévenon; Detlef Weigel; Markus Schmid; François Parcy
This work presents the generation of a predictive model describing the DNA recognition specificity of the LEAFY floral transcription factor. The model is used to predict in vivo regulatory interactions between LEAFY and its target genes from mere inspection of various plant genome sequences. Despite great advances in sequencing technologies, generating functional information for nonmodel organisms remains a challenge. One solution lies in an improved ability to predict genetic circuits based on primary DNA sequence in combination with detailed knowledge of regulatory proteins that have been characterized in model species. Here, we focus on the LEAFY (LFY) transcription factor, a conserved master regulator of floral development. Starting with biochemical and structural information, we built a biophysical model describing LFY DNA binding specificity in vitro that accurately predicts in vivo LFY binding sites in the Arabidopsis thaliana genome. Applying the model to other plant species, we could follow the evolution of the regulatory relationship between LFY and the AGAMOUS (AG) subfamily of MADS box genes and show that this link predates the divergence between monocots and eudicots. Remarkably, our model succeeds in detecting the connection between LFY and AG homologs despite extensive variation in binding sites. This demonstrates that the cis-element fluidity recently observed in animals also exists in plants, but the challenges it poses can be overcome with predictions grounded in a biophysical model. Therefore, our work opens new avenues to deduce the structure of regulatory networks from mere inspection of genomic sequences.
Plant Journal | 2009
David Posé; Itziar Castanedo; Omar Borsani; Benjamín Nieto; Abel Rosado; Ludivine Taconnat; Albert Ferrer; Liam Dolan; Victoriano Valpuesta; Miguel A. Botella
Squalene epoxidase enzymes catalyse the conversion of squalene into 2,3-oxidosqualene, the precursor of cyclic triterpenoids. Here we report that the Arabidopsis drought hypersensitive/squalene epoxidase 1-5 (dry2/sqe1-5) mutant, identified by its extreme hypersensitivity to drought stress, has altered stomatal responses and root defects because of a point mutation in the SQUALENE EPOXIDASE 1 (SQE1) gene. GC-MS analysis indicated that the dry2/sqe1-5 mutant has altered sterol composition in roots but wild-type sterol composition in shoots, indicating an essential role for SQE1 in root sterol biosynthesis. Importantly, the stomatal and root defects of the dry2/sqe1-5 mutant are associated with altered production of reactive oxygen species. As RHD2 NADPH oxidase is de-localized in dry2/sqe1-5 root hairs, we propose that sterols play an essential role in the localization of NADPH oxidases required for regulation of reactive oxygen species, stomatal responses and drought tolerance.
Current Opinion in Plant Biology | 2012
David Posé; Levi Yant; Markus Schmid
Substantial recent advances in genome-scale transcription factor target mapping have provided a fresh view of the gene networks governing developmental transitions. In particular, our understanding of the fine-scale spatial and temporal dynamics underlying the floral transition at the shoot apex has seen great advances in the past two years. Single transcription factors are regularly observed to act in complex manners, directly promoting the expression of particular targets while directly repressing the expression of others, based at least partly on defined heterodimerization patterns. For single regulators this behavior reaches into distinct physiological processes, providing compelling evidence that particular transcription factors act to directly integrate diverse processes to orchestrate complex developmental transitions.
Journal of Experimental Botany | 2015
Giovanna Capovilla; Markus Schmid; David Posé
The timing of flowering is a crucial decision in the life cycle of plants since favourable conditions are needed to maximize reproductive success and, hence, the survival of the species. It is therefore not surprising that plants constantly monitor endogenous and environmental signals, such as day length (photoperiod) and temperature, to adjust the timing of the floral transition. Temperature in particular has been shown to have a tremendous effect on the timing of flowering: the effect of prolonged periods of cold, called the vernalization response, has been extensively studied and the underlying epigenetic mechanisms are reasonably well understood in Arabidopsis thaliana. In contrast, the effect of moderate changes in ambient growth temperature on the progression of flowering, the thermosensory pathway, is only starting to be understood on the molecular level. Several genes and molecular mechanisms underlying the thermosensory pathway have already been identified and characterized in detail. At a time when global temperature is rising due to climate change, this knowledge will be pivotal to ensure crop production in the future.
The Plant Cell | 2013
Verónica G. Doblas; Vitor Amorim-Silva; David Posé; Abel Rosado; Alicia Esteban; Montserrat Arró; Herlander Azevedo; Aureliano Bombarely; Omar Borsani; Victoriano Valpuesta; Albert Ferrer; R. M. Tavares; Miguel A. Botella
In contrast with animals, little is known about the regulation of HMGR, the rate-limiting enzyme of isoprenoid biosynthesis, in plants. Through the identification of second-site suppressors of the Arabidopsis dry2/sqe1-5 mutant, we found that the putative E3 ubiquitin ligase SUD1, likely involved in endoplasmic reticulum–associated degradation, is a regulator of HMGR activity. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.
PLOS Genetics | 2015
Ulrich Lutz; David Posé; Matthias Pfeifer; Heidrun Gundlach; Jörg Hagmann; Congmao Wang; Detlef Weigel; Klaus F. X. Mayer; Markus Schmid; Claus Schwechheimer
Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.
Nature Communications | 2016
Camille Sayou; Max H. Nanao; Marc Jamin; David Posé; Emmanuel Thévenon; Laura Grégoire; Gabrielle Tichtinsky; Grégoire Denay; Felix Ott; Marta Peirats Llobet; Markus Schmid; Renaud Dumas; François Parcy
Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.
PLOS ONE | 2015
Felipe Leal Valentim; Simon van Mourik; David Posé; Min C. Kim; Markus Schmid; Roeland C. H. J. van Ham; Marco Busscher; Gabino Sanchez-Perez; Jaap Molenaar; Gerco C. Angenent; Richard G. H. Immink; Aalt D. J. van Dijk
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.