David Poulin
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Poulin.
Physical Review Letters | 2005
David W. Kribs; Raymond Laflamme; David Poulin
We present a unified approach to quantum error correction, called operator quantum error correction. Our scheme relies on a generalized notion of a noiseless subsystem that is investigated here. By combining the active error correction with this generalized noiseless subsystems method, we arrive at a unified approach which incorporates the known techniques--i.e., the standard error correction model, the method of decoherence-free subspaces, and the noiseless subsystem method--as special cases. Moreover, we demonstrate that the quantum error correction condition from the standard model is a necessary condition for all known methods of quantum error correction.
Physical Review Letters | 2005
David Poulin
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shors 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
Physical Review Letters | 2004
Harold Ollivier; David Poulin; Wojciech H. Zurek
We study the emergence of objective properties in open quantum systems. In our analysis, the environment is promoted from a passive role of a reservoir selectively destroying quantum coherence to an active role of amplifier selectively proliferating information about the system. We show that only preferred pointer states of the system can leave a redundant and therefore easily detectable imprint on the environment. Observers who-as is almost always the case-discover the state of the system indirectly (by probing a fraction of its environment) will find out only about the corresponding pointer observable. Many observers can act in this fashion independently and without perturbing the system. They will agree about its state. In this operational sense, preferred pointer states exist objectively.
Nature Communications | 2010
Marcus Cramer; Martin B. Plenio; Rolando D. Somma; David Gross; Stephen D. Bartlett; Olivier Landon-Cardinal; David Poulin; Yi-Kai Liu
Quantum state tomography--deducing quantum states from measured data--is the gold standard for verification and benchmarking of quantum devices. It has been realized in systems with few components, but for larger systems it becomes unfeasible because the number of measurements and the amount of computation required to process them grows exponentially in the system size. Here, we present two tomography schemes that scale much more favourably than direct tomography with system size. One of them requires unitary operations on a constant number of subsystems, whereas the other requires only local measurements together with more elaborate post-processing. Both rely only on a linear number of experimental operations and post-processing that is polynomial in the system size. These schemes can be applied to a wide range of quantum states, in particular those that are well approximated by matrix product states. The accuracy of the reconstructed states can be rigorously certified without any a priori assumptions.
Nature | 2011
Kristan Temme; Tobias J. Osborne; Karl Gerd H. Vollbrecht; David Poulin; Frank Verstraete
The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems—a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman’s challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today’s technology.
Physical Review Letters | 2010
Guillaume Duclos-Cianci; David Poulin
We present a family of algorithms, combining real-space renormalization methods and belief propagation, to estimate the free energy of a topologically ordered system in the presence of defects. Such an algorithm is needed to preserve the quantum information stored in the ground space of a topologically ordered system and to decode topological error-correcting codes. For a system of linear size l, our algorithm runs in time logl compared to l{6} needed for the minimum-weight perfect matching algorithm previously used in this context and achieves a higher depolarizing error threshold.
Physical Review Letters | 2011
Marcus P. da Silva; Olivier Landon-Cardinal; David Poulin
Quantum tomography is the main method used to assess the quality of quantum information processing devices. However, the amount of resources needed for quantum tomography is exponential in the device size. Part of the problem is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the fidelity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a significant reduction in resources compared to tomography. In particular, we demonstrate that fidelity can be estimated from a number of simple experiments that is independent of the system size, removing an important roadblock for the experimental study of larger quantum information processing units.
IEEE Transactions on Information Theory | 2009
David Poulin; Jean-Pierre Tillich; Harold Ollivier
In this paper, we present a theory of quantum serial turbo codes, describe their iterative decoding algorithm, and study their performances numerically on a depolarization channel. Our construction offers several advantages over quantum low-density parity-check (LDPC) codes. First, the Tanner graph used for decoding is free of 4-cycles that deteriorate the performances of iterative decoding. Second, the iterative decoder makes explicit use of the codes degeneracy. Finally, there is complete freedom in the code design in terms of length, rate, memory size, and interleaver choice. We define a quantum analogue of a state diagram that provides an efficient way to verify the properties of a quantum convolutional code, and in particular, its recursiveness and the presence of catastrophic error propagation. We prove that all recursive quantum convolutional encoders have catastrophic error propagation. In our constructions, the convolutional codes have thus been chosen to be noncatastrophic and nonrecursive. While the resulting families of turbo codes have bounded minimum distance, from a pragmatic point of view, the effective minimum distances of the codes that we have simulated are large enough not to degrade the iterative decoding performance up to reasonable word error rates and block sizes. With well-chosen constituent convolutional codes, we observe an important reduction of the word error rate as the code length increases.
Annals of Physics | 2008
Matthew S. Leifer; David Poulin
Abstract Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley–Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.
Physical Review Letters | 2011
David Poulin; Angie Qarry; Rolando D. Somma; Frank Verstraete
We consider the manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time. We establish this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a well-known counting argument. This also demonstrates that a computational model based on arbitrarily rapidly changing Hamiltonians is no more powerful than the standard quantum circuit model.