Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Poumo Tchouassi is active.

Publication


Featured researches published by David Poumo Tchouassi.


PLOS ONE | 2014

Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors.

Vincent O. Nyasembe; David Poumo Tchouassi; Hillary Kirwa; Woodbridge A. Foster; Peter E. A. Teal; Christian Borgemeister; Baldwyn Torto

Background Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Methodology and Principal Finding Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. Conclusion and Significance The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors.


PLOS Neglected Tropical Diseases | 2013

Common Host-Derived Chemicals Increase Catches of Disease-Transmitting Mosquitoes and Can Improve Early Warning Systems for Rift Valley Fever Virus

David Poumo Tchouassi; Rosemary Sang; Catherine L. Sole; Armanda D.S. Bastos; Peter E. A. Teal; Christian Borgemeister; Baldwyn Torto

Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO2-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO2 alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP.


Veterinary Medicine International | 2014

Detection of rift valley Fever virus interepidemic activity in some hotspot areas of kenya by sentinel animal surveillance, 2009-2012.

Jacqueline Kasiiti Lichoti; Absolomon Kihara; Abuu A Oriko; Leonard Ateya Okutoyi; James Wauna; David Poumo Tchouassi; Caroline Tigoi; Stephen J. Kemp; Rosemary Sang; Rees Murithi Mbabu

Rift Valley fever virus causes an important zoonotic disease of humans and small ruminants in Eastern Africa and is spread primarily by a mosquito vector. In this region, it occurs as epizootics that typically occur at 5–15-year intervals associated with unusual rainfall events. It has hitherto been known that the virus is maintained between outbreaks in dormant eggs of the mosquito vector and this has formed the basis of understanding of the epidemiology and control strategies of the disease. We show here that seroconversion and sporadic acute disease do occur during the interepidemic periods (IEPs) in the absence of reported cases in livestock or humans. The finding indicates that previously undetected low-level virus transmission during the IEPs does occur and that epizootics may also be due to periodic expansion of mosquito vectors in the presence of both circulating virus and naïve animals.


International Journal of Health Geographics | 2014

Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors

Henri E. Z. Tonnang; David Poumo Tchouassi; Henry S Juarez; Lilian K Igweta; Rousseau Djouaka

BackgroundPredicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns.MethodsWe developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2).ResultsFive classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios.ConclusionThe potential shifts of these malaria vectors have implications for human exposure to malaria, as recrudescence of the disease is likely to be recorded in several new areas and regions. Therefore, the need to develop, compile and share malaria preventive measures, which can be adapted to different climatic scenarios, remains crucial.


PLOS Neglected Tropical Diseases | 2012

Sheep Skin Odor Improves Trap Captures of Mosquito Vectors of Rift Valley Fever

David Poumo Tchouassi; Rosemary Sang; Catherine L. Sole; Armanda D.S. Bastos; Klaus Mithoefer; Baldwyn Torto

In recent years, the East African region has seen an increase in arboviral diseases transmitted by blood-feeding arthropods. Effective surveillance to monitor and reduce incidence of these infections requires the use of appropriate vector sampling tools. Here, trapped skin volatiles on fur from sheep, a known preferred host of mosquito vectors of Rift Valley fever virus (RVFV), were used with a standard CDC light trap to improve catches of mosquito vectors. We tested the standard CDC light trap alone (L), and baited with (a) CO2 (LC), (b) animal volatiles (LF), and (c) CO2 plus animal volatiles (LCF) in two highly endemic areas for RVF in Kenya (Marigat and Ijara districts) from March–June and September–December 2010. The incidence rate ratios (IRR) that mosquito species chose traps baited with treatments (LCF, LC and LF) instead of the control (L) were estimated. Marigat was dominated by secondary vectors and host-seeking mosquitoes were 3–4 times more likely to enter LC and LCF traps [IRR = 3.1 and IRR = 3.8 respectively] than the L only trap. The LCF trap captured a greater number of mosquitoes than the LC trap (IRR = 1.23) although the difference was not significant. Analogous results were observed at Ijara, where species were dominated by key primary and primary RVFV vectors, with 1.6-, 6.5-, and 8.5-fold increases in trap captures recorded in LF, LC and LCF baited traps respectively, relative to the control. These catches all differed significantly from those trapped in L only. Further, there was a significant increase in trap captures in LCF compared to LC (IRR = 1.63). Mosquito species composition and trap counts differed between the RVF sites. However, within each site, catches differed in abundance only and no species preferences were noted in the different baited-traps. Identifying the attractive components present in these natural odors should lead to development of an effective odor-bait trapping system for population density-monitoring and result in improved RVF surveillance especially during the inter-epidemic period.


Parasites & Vectors | 2012

Trapping of Rift Valley Fever (RVF) vectors using Light Emitting Diode (LED) CDC traps in two arboviral disease hot spots in Kenya

David Poumo Tchouassi; Rosemary Sang; Catherine L. Sole; Armanda D.S. Bastos; Lee W. Cohnstaedt; Baldwyn Torto

BackgroundMosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs) which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV) vectors.MethodsThe efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR)) to sample RVF vectors was evaluated relative to incandescent light (as control) in a CDC light trap in two RVF hotspots (Marigat and Ijara districts) in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR) that mosquito species chose other treatments instead of the control, were estimated.ResultsSeasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR < 1) although only significantly different from red and violet.ConclusionBased on our trapping design and color, none of the LEDs outcompeted the standard incandescent light. The data however provides preliminary evidence that a preference might exist for some of these mosquito species based on observed differential attraction to these light colors requiring future studies to compare reflected versus transmitted light and the incorporation of colored light of varying intensities.


PLOS ONE | 2015

Potential of the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) as an Unconventional Source of Dietary and Therapeutic Sterols

Xavier Cheseto; Serge P. Kuate; David Poumo Tchouassi; Mary Ndung’u; Peter E. A. Teal; Baldwyn Torto

Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3β, 5α) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3β, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context.


Parasites & Vectors | 2016

Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya.

David Poumo Tchouassi; Robinson O. K. Okiro; Rosemary Sang; Lee W. Cohnstaedt; David Scott McVey; Baldwyn Torto

BackgroundAnimal hosts may vary in their attraction and acceptability as components of the host location process for assessing preference, and biting rates of vectors and risk of exposure to pathogens. However, these parameters remain poorly understood for mosquito vectors of the Rift Valley fever (RVF), an arboviral disease, and for a community of mosquitoes.MethodsUsing three known livestock amplifiers of RVF virus including sheep, goat and cattle as bait in enclosure traps, we investigated the host-feeding patterns for a community of mosquitoes in Naivasha, an endemic area of Rift Valley fever (RVF), in a longitudinal study for six months (June–November 2015). We estimated the incidence rate ratios (IRR) where mosquitoes chose cow over the other livestock hosts by comparing their attraction (total number collected) and engorgement rate (proportion freshly blood-fed) on these hosts.ResultsOverall, significant differences were observed in host preference parameters for attraction (F2,15 = 4.1314, P = 0.037) and engorgement (F2,15 = 6.24, P = 0.01) with cow consistently attracting about 3-fold as many mosquitoes as those engorged on sheep (attraction: IRR = 2.9, 95 % CI 1.24–7.96; engorgement: IRR = 3.2, 95 % CI = 1.38–7.38) or goat (attraction: IRR = 2.7, 95 % CI 1.18–7.16; engorgement: IRR = 3.28, 95 % CI 1.47–7.53). However, there was no difference between the attraction elicited by sheep and goat (IRR = 1.08; 95 % CI 0.35–3.33 or engorgement rate (IRR = 0.96, 95 % CI  0.36–2.57).ConclusionDespite the overall attractive pattern to feed preferentially on cows, the engorgement rate was clearly independent of the number attracted for certain mosquito species, notably among the flood water Aedes spp., largely incriminated previously as primary vectors of RVF. Our findings suggest that insecticide treated cattle (ITC) can be exploited in enclosure traps as contact bait in the monitoring and control of disease-causing mosquitoes in RVF endemic areas.


PLOS Neglected Tropical Diseases | 2017

Assessment of risk of dengue and yellow fever virus transmission in three major Kenyan cities based on Stegomyia indices

Sheila B. Agha; David Poumo Tchouassi; Armanda D.S. Bastos; Rosemary Sang

Dengue (DEN) and yellow fever (YF) are re-emerging in East Africa, with contributing drivers to this trend being unplanned urbanization and increasingly adaptable anthropophilic Aedes (Stegomyia) vectors. Entomological risk assessment of these diseases remains scarce for much of East Africa and Kenya even in the dengue fever-prone urban coastal areas. Focusing on major cities of Kenya, we compared DEN and YF risk in Kilifi County (DEN-outbreak-prone), and Kisumu and Nairobi Counties (no documented DEN outbreaks). We surveyed water-holding containers for mosquito immature (larvae/pupae) indoors and outdoors from selected houses during the long rains, short rains and dry seasons (100 houses/season) in each County from October 2014-June 2016. House index (HI), Breteau index (BI) and Container index (CI) estimates based on Aedes (Stegomyia) immature infestations were compared by city and season. Aedes aegypti and Aedes bromeliae were the main Stegomyia species with significantly more positive houses outdoors (212) than indoors (88) (n = 900) (χ2 = 60.52, P < 0.0001). Overall, Ae. aegypti estimates of HI (17.3 vs 11.3) and BI (81.6 vs 87.7) were higher in Kilifi and Kisumu, respectively, than in Nairobi (HI, 0.3; BI,13). However, CI was highest in Kisumu (33.1), followed by Kilifi (15.1) then Nairobi (5.1). Aedes bromeliae indices were highest in Kilifi, followed by Kisumu, then Nairobi with HI (4.3, 0.3, 0); BI (21.3, 7, 0.7) and CI (3.3, 3.3, 0.3), at the respective sites. HI and BI for both species were highest in the long rains, compared to the short rains and dry seasons. We found strong positive correlations between the BI and CI, and BI and HI for Ae. aegypti, with the most productive container types being jerricans, drums, used/discarded containers and tyres. On the basis of established vector index thresholds, our findings suggest low-to-medium risk levels for urban YF and high DEN risk for Kilifi and Kisumu, whereas for Nairobi YF risk was low while DEN risk levels were low-to-medium. The study provides a baseline for future vector studies needed to further characterise the observed differential risk patterns by vector potential evaluation. Identified productive containers should be made the focus of community-based targeted vector control programs.


Parasites & Vectors | 2015

Linalool oxide: generalist plant based lure for mosquito disease vectors.

Vincent O. Nyasembe; David Poumo Tchouassi; Charles M. Mbogo; Catherine L. Sole; Christian Walter Werner Pirk; Baldwyn Torto

BackgroundLack of effective vaccines and therapeutics for important arboviral diseases such as Rift Valley fever (RVF) and dengue, necessitates continuous monitoring of vector populations for infections in them. Plant-based lures as surveillance tools has the potential of targeting mosquitoes of both sexes and females of varied physiological states; yet such lures are lacking for vectors of these diseases. Here, we present evidence of the effectiveness of linalool oxide (LO), a single plant-based lure previously developed for malaria vectors in trapping RVF vectors, Aedes mcintoshi and Aedes ochraceus, and dengue vector, Aedes aegypti.MethodsFor RVF vectors, we used CDC traps to evaluate the performance of LO against three vertebrate-based lures: CO2 (dry ice), BioGent (BG) lure, and HONAD (a blend of aldehydes) in 2 experiments with Completely Randomized design: 1) using unlit CDC traps baited separately with LO, HONAD and BG-lure, and unlit CDC trap + CO2 and lit CDC trap as controls, 2) similar treatments but with inclusion of CO2 to all the traps. For dengue vectors, LO was evaluated against BG lure using BG sentinel traps, in a 3 × 6 Latin Square design, first as single lures and then combined with CO2 and traps baited with CO2 included as controls. Trap captures were compared between the treatments using Chi square and GLM.ResultsLow captures of RVF vectors were recorded for all lures in the absence of CO2 with no significant difference between them. When combined with CO2, LO performance in trapping these vectors was comparable to BG-lure and HONAD but it was less effective than the lit CDC trap. In the absence of CO2, LO performed comparably with the BG-lure in trapping female Ae. aegypti, but with significantly higher males recorded in traps baited with the plant-based lure. When CO2 was added, LO was significantly better than the BG-lure with a 2.8- fold increase in captures of male Ae. aegypti.ConclusionsThese results highlight the potential of LO as a generalist plant-based lure for mosquito disease vectors, pending further assessment of possible specificity in their response profile to the different stereoisomers of this compound.

Collaboration


Dive into the David Poumo Tchouassi's collaboration.

Top Co-Authors

Avatar

Rosemary Sang

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Baldwyn Torto

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Tigoi

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Joel Lutomiah

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sheila B. Agha

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Vincent O. Nyasembe

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter E. A. Teal

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge