David R. Albers
Dow Chemical Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David R. Albers.
Journal of Nutrition | 2010
Glenn E. Bartley; Wallace Yokoyama; Scott A. Young; William H.K. Anderson; Shao-Ching Hung; David R. Albers; Marsha L. Langhorst; Hyunsook Kim
Hydroxypropyl methylcellulose (HPMC), a semisynthetic, nonfermentable soluble dietary fiber, is not absorbed by the body, but its presence in the intestinal lumen increases fecal fat, sterol, and bile acid excretions and decreases intestinal cholesterol absorption, all of which may indirectly affect hepatic lipid metabolism. We measured the expression of hepatic genes involved in cholesterol, bile acid, and fatty acid metabolism in hamsters fed diets containing 39% of energy as fat and 5% of weight as HPMC or microcrystalline cellulose (control) for 4 wk. HPMC-fed hamsters gained significantly less body weight than the control group but did not differ in food intake. They had significantly lower plasma triglyceride and total-, VLDL-, HDL-, and LDL-cholesterol concentrations and hepatic total lipid, total and free cholesterol and triglyceride concentrations than controls. Compared with controls, HPMC-fed hamsters had greater levels of mRNA for CYP7A1 (cytochrome P450 7A1; 8-fold of control; P < 0.05), CYP51 (lanosterol 14alpha-demethylase; 5.3-fold of control; P < 0.05), and HMG-CoAR (3-hydroxy-3-methylglutaryl CoA reductase; 1.8-fold of control; P < 0.05). The plasma total cholesterol concentrations from both the control and HPMC groups were inversely correlated with expression of hepatic CYP7A1 (r = -0.54; P < 0.05), CYP51 (r = -0.79; P < 0.005), and HMG-CoAR (r = -0.75; P < 0.005) genes. This suggests that HPMC supplementation affected both cholesterol and bile acid synthesis. Our data confirm that altered hepatic expression of lipid metabolism-related genes, possibly due to modulation of fecal bile acid excretion and intestinal cholesterol absorption, contributes to the lipid-lowering effects of HPMC.
Analytical Chemistry | 2011
Krishna Kuppannan; David R. Albers; Barry W. Schafer; Demetrius Dielman; Scott A. Young
Maize (Zea mays) is not considered a major allergenic food; however, when food induced allergenic and immunologic reactions have been implicated to maize, lipid transfer proteins (LTPs) have been identified as major allergens. LTP is an extremely stable protein that is resistant to both proteolytic attack and food processing, which permits the allergen to reach the gastrointestinal immune system in an immunogenic and allergenic conformation, allowing sensitization and induction of systemic symptoms. They are considered a complete food allergen in that they are capable of inducing specific IgE as well as eliciting severe symptoms. We have purified and characterized an endogenous ~9 kDa LTP from maize kernels. The maize LTP consists of 93 amino acid residues and has a M(r) of 9046.1 Da, determined by electrospray ionization mass spectrometry. Following accurate identification and characterization of maize LTP, a highly specific and quantitative assay using liquid chromatography with ultraviolet and mass spectrometric detection was developed. The present assay enables determination of LTP over a concentration range from 29 to 1030 μg/g in maize kernel samples. Assay recovery (percent relative error, % RE) was measured at 11 different concentrations ranging from 4 to 147 μg/mL and did not exceed 5.1%. The precision (percent coefficient of variation, % CV) was measured at 3 concentrations on each of 4 days and did not exceed 14.4%. The method was applied to evaluate the levels of LTP in 14 different maize lines. To our knowledge, this represents the first quantitative liquid chromatography-ultraviolet/mass spectrometry (LC-UV/MS) assay for the determination of LTP for the assessment of a food allergen.
Journal of Chromatography B | 2009
Nicholas A. Cellar; Anton S. Karnoup; David R. Albers; Marsha L. Langhorst; Scott A. Young
Proteomic analysis can be hampered by the large concentration distribution of proteins. Immunoaffinity techniques have been applied to selectively remove high abundant proteins (HAPs) from samples prior to analysis. Although immunodepletion of HAPs has been shown to enable greater detection of low abundance proteins, the resulting fractions are often diluted 5-10-fold during the process. Various concentration techniques can be applied; however, many are incompatible with the high salt content of the fractions. To help overcome this limitation, a two-dimensional liquid chromatography (2D-LC) method was developed which couples an IgY immunodepletion column in the first dimension with a large pore C18 analytical column in the second. A protein trap cartridge serves as an injection loop between the columns to facilitate on-line concentration and desalting. Feasibility of this 2D-LC system was demonstrated for mammalian proteomics. Beyond depletion of interfering proteins, this instrumentation provides four advantages which make immunodepletion technology more convenient, including: (1) on-line desalting (2) automatic buffer exchange (3) facile concentration and (4) fractionation by polarity.
Journal of Diabetes | 2009
Shao-Ching Hung; Glenn E. Bartley; Scott A. Young; David R. Albers; Demetrius Dielman; William H.K. Anderson; Wallace Yokoyama
Background: The hypocholesterolemic and hypoglycemic effects of various natural and semisynthetic dietary fibers have been studied for their potential use in the prevention and improvement of metabolic syndrome. Of these dietary fibers, hydroxypropyl methylcellulose (HPMC) has been shown to lower plasma cholesterol and reduce weight gain. However, the underlying mechanisms are not known. In the present study, we examined associations between plasma adipocytokine levels and both lipid metabolism and insulin sensitivity after HPMC intake in golden Syrian hamsters. In addition, endogenous adiponectin from hamster plasma was purified and characterized.
Journal of Diabetes | 2011
Shao-Ching Hung; William H.K. Anderson; David R. Albers; Marsha L. Langhorst; Scott A. Young
Background: To investigate the effect of hydroxypropyl methylcellulose (HPMC) on weight loss and metabolic disorders associated with obesity using a high‐fat diet‐induced obese mouse model under a high‐fat diet regimen.
Journal of Agricultural and Food Chemistry | 2011
Wallace Yokoyama; William H.K. Anderson; David R. Albers; Yun-Jeong Hong; Marsha L. Langhorst; Shao-Ching Hung; Jiann-Tsyh Lin; Scott A. Young
In animal studies, hydroxypropyl methylcellulose (HPMC) intake results in increased fecal fat excretion; however, the effects on dietary saturated fatty acids (SATs) and trans-fatty acids (TRANS) remain unknown. This study investigated the effect of HPMC on digestion and absorption of lipids in male Golden Syrian hamsters fed either freeze-dried ground pizza (PZ), pound cake (PC), or hamburger and fries (BF) supplemented with dietary fiber from either HPMC or microcrystalline cellulose (MCC) for 3 weeks. We observed greater excretion of SATs and TRANS by both diets supplemented with HPMC or MCC as compared to the feed. SAT, TRANS, and unsaturated fatty acids (UNSAT) contents of feces of the PZ diet supplemented with HPMC were 5-8 times higher than diets supplemented with MCC and tended to be higher in the PC- and BF-HPMC supplemented diets as well. We also observed significant increases in fecal excretion of bile acids (2.6-3-fold; P < 0.05), sterols (1.1-1.5-fold; P < 0.05), and unsaturated fatty acids (UNSAT, 1.7-4.5-fold; P < 0.05). The animal body weight gain was inversely correlated with the excretion of fecal lipid concentrations of bile acids (r = -0.56; P < 0.005), sterols (r = -0.48; P < 0.005), SAT (r = -0.69; P < 0.005), UNSAT (r = -0.67; P < 0.005), and TRANS (r = -0.62; P < 0.005). Therefore, HPMC may be facilitating fat excretion in a biased manner with preferential fecal excretion of both TRANS and SAT in hamsters fed fast food diets.
Journal of Chromatography A | 2008
Grant Von Wald; David R. Albers; Hernan J. Cortes; Terry McCabe
The concentration and identity of the compounds detected in the vapor above six ionic liquids by headspace gas chromatography (HS-GC) at 100 degrees C are reported. In addition, the partition coefficients for 10 different compounds in these ionic liquids and limits of detection were measured. These results provide quantitative guidance for the application of ionic liquids for HS-GC.
Journal of Diabetes | 2012
Scott A. Young; Shao-Ching Hung; William H.K. Anderson; David R. Albers; Marsha L. Langhorst; Wallace Yokoyama
Background: To investigate the effect of a new soluble fiber, namely cationic hydroxyethyl cellulose (cHEC), on weight loss and metabolic disorders associated with obesity using a high‐fat diet‐induced obese mouse model.
Journal of Chromatography A | 2009
Grant Von Wald; David R. Albers; Terry McCabe
A procedure for using ionic liquids to determine volatile impurities in compounds or matrices that are soluble in an ionic liquid is described. Using a conventional autosampler a droplet of ionic liquid solution is suspended in the inlet of the gas chromatograph and analytes are desorbed onto a GC column using splitless injection conditions. Results are presented for 1,2-propanediol, nonane, N,N-dimethylacetamide, and mesitylene in two different compounds in the ionic liquids trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide and trihexyltetradecylphosphonium dicyanamide.
Journal of Agricultural and Food Chemistry | 2012
Shao-Ching Hung; Wallace Yokoyama; Hyunsook Kim; Glenn E. Bartley; William H.K. Anderson; David R. Albers; Marsha L. Langhorst; David M. Williams; William T. Stott; Maciej Turowski; Scott A. Young
Cationic hydroxyethyl cellulose (cHEC) was supplemented in a high-fat diet to determine if this new soluble fiber had an effect on hypercholesterolemia and dyslipidemia associated with cardiovascular disease using Golden Syrian hamster as an animal model. Supplementation of 3-5% cHEC in a high-fat diet for 4 weeks led to significant weight gain reduction in hamsters. In addition, significant decreases in adipose and liver weights, concentrations of plasma total, VLDL, and LDL cholesterol, and hepatic lipids were shown. No significant improvements in glucose and insulin levels were observed with cHEC; however, a significant increase in plasma adiponectin and a decrease in leptin were observed. As compared with controls, 8% cHEC-fed hamsters had greater levels of mRNA for CYP7A1 (cytochrome P450 7A1; 2-fold of control; P < 0.05), CYP51 (lanosterol 14α-demethylase; 6-fold of control; P < 0.05), and LDLR (LDL receptor; 1.5-fold of control) in the liver. These findings suggest the possibility of the use of cHEC for cholesterol reduction and beneficial effects on the cardiovascular risk factors.