Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Corey is active.

Publication


Featured researches published by David R. Corey.


Nature Structural & Molecular Biology | 2006

Involvement of AGO1 and AGO2 in mammalian transcriptional silencing

Bethany A. Janowski; Kenneth Huffman; Jacob C. Schwartz; Rosalyn Ram; Robert Nordsell; David S. Shames; John D. Minna; David R. Corey

Duplex RNAs complementary to messenger RNA inhibit translation in mammalian cells by RNA interference (RNAi). Studies have reported that RNAs complementary to promoter DNA also inhibit gene expression. Here we show that the human homologs of Argonaute-1 (AGO1) and Argonaute-2 (AGO2) link the silencing pathways that target mRNA with pathways mediating recognition of DNA. We find that synthetic antigene RNAs (agRNAs) complementary to transcription start sites or more upstream regions of gene promoters inhibit gene transcription. This silencing occurs in the nucleus, requires high promoter activity and does not necessarily require histone modification. AGO1 and AGO2 associate with promoter DNA in cells treated with agRNAs, and inhibiting expression of AGO1 or AGO2 reverses transcriptional and post-transcriptional silencing. Our data indicate key linkages and important mechanistic distinctions between transcriptional and post-transcriptional silencing pathways in mammalian cells.


Nature Structural & Molecular Biology | 2008

Antisense transcripts are targets for activating small RNAs

Jacob C. Schwartz; Scott T. Younger; Ngoc Bich Nguyen; Daniel B. Hardy; Brett P. Monia; David R. Corey; Bethany A. Janowski

Agents that activate expression of specific genes to probe cellular pathways or alleviate disease would go beyond existing approaches for controlling gene expression. Duplex RNAs complementary to promoter regions can repress or activate gene expression. The mechanism of these promoter-directed antigene RNAs (agRNAs) has been obscure. Other work has revealed noncoding transcripts that overlap mRNAs. The function of these noncoding transcripts is also not understood. Here we link these two sets of enigmatic results. We find that antisense transcripts are the target for agRNAs that activate or repress expression of progesterone receptor (PR). agRNAs recruit Argonaute proteins to PR antisense transcripts and shift localization of the heterogeneous nuclear ribonucleoprotein-k, RNA polymerase II and heterochromatin protein 1γ. Our data demonstrate that antisense transcripts have a central role in recognition of the PR promoter by both activating and inhibitory agRNAs.


The EMBO Journal | 2011

Regulation of TFEB and V-ATPases by mTORC1

Samuel Peña-Llopis; Silvia Vega-Rubin-de-Celis; Jacob C. Schwartz; Nicholas C. Wolff; Tram Anh T. Tran; Lihua Zou; Xian Jin Xie; David R. Corey; James Brugarolas

Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is an important, highly conserved, regulator of cell growth. Ancient among the signals that regulate mTORC1 are nutrients. Amino acids direct mTORC1 to the surface of the late endosome/lysosome, where mTORC1 becomes receptive to other inputs. However, the interplay between endosomes and mTORC1 is poorly understood. Here, we report the discovery of a network that links mTORC1 to a critical component of the late endosome/lysosome, the V‐ATPase. In an unbiased screen, we found that mTORC1 regulated the expression of, among other lysosomal genes, the V‐ATPases. mTORC1 regulates V‐ATPase expression both in cells and in mice. V‐ATPase regulation by mTORC1 involves a transcription factor translocated in renal cancer, TFEB. TFEB is required for the expression of a large subset of mTORC1 responsive genes. mTORC1 coordinately regulates TFEB phosphorylation and nuclear localization and in a manner dependent on both TFEB and V‐ATPases, mTORC1 promotes endocytosis. These data uncover a regulatory network linking an oncogenic transcription factor that is a master regulator of lysosomal biogenesis, TFEB, to mTORC1 and endocytosis.


Journal of Clinical Investigation | 2007

Chemical modification: the key to clinical application of RNA interference?

David R. Corey

RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity.


Cell | 2012

Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression.

Dongbo Yu; Hannah Pendergraff; Jing Liu; Holly Kordasiewicz; Don W. Cleveland; Eric E. Swayze; Walt F. Lima; Stanley T. Crooke; Thazha P. Prakash; David R. Corey

Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the efficiency of RNAi. Here, we describe RNAi by single-stranded siRNAs (ss-siRNAs). ss-siRNAs are potent (>100-fold more than unmodified RNA) and allele-selective (>30-fold) inhibitors of mutant HTT expression in cells derived from HD patients. Strategic placement of mismatched bases mimics micro-RNA recognition and optimizes discrimination between mutant and wild-type alleles. ss-siRNAs require Argonaute protein and function through the RNAi pathway. Intraventricular infusion of ss-siRNA produced selective silencing of the mutant HTT allele throughout the brain in a mouse HD model. These data demonstrate that chemically modified ss-siRNAs function through the RNAi pathway and provide allele-selective compounds for clinical development.


Nature Biotechnology | 2009

Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs

Jiaxin Hu; Masayuki Matsui; Keith T. Gagnon; Jacob C. Schwartz; Sylvie Gabillet; Khalil Arar; Jun Wu; Ilya Bezprozvanny; David R. Corey

Many neurological disorders are caused by expanded trinucleotide repeats1, including Machado-Joseph Disease (MJD)2 and Huntington Disease (HD)3. MJD and HD are caused by expanded CAG repeats within the ataxin-3 (ATXN3) and huntingtin (HTT) genes. Inhibiting expression of ATXN3 or HTT are promising therapeutic strategies, but indiscriminant inhibition of wild-type and mutant alleles may lead to toxicity. We hypothesized that expanded triplet repeat mRNA might be preferentially recognized by complementary oligomers. We observe selective inhibition of mutant ataxin-3 and HTT protein expression by peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers targeting CAG repeats. Duplex RNAs were less selective, suggesting an advantage for single-stranded oligomers. Inhibiting mutant HTT expression protected cultured striatal neurons from an HD mouse model against glutamate-induced toxicity. Antisense oligomers that discriminate between wild-type and mutant genes on the basis of repeat length offer new options for treating MJD, HD, and other hereditary diseases.Expanded trinucleotide repeats cause many neurological diseases. These include Machado-Joseph disease (MJD) and Huntingtons disease (HD), which are caused by expanded CAG repeats within an allele of the ataxin-3 (ATXN3) and huntingtin (HTT) genes, respectively. Silencing expression of these genes is a promising therapeutic strategy, but indiscriminate inhibition of both the mutant and wild-type alleles may lead to toxicity, and allele-specific approaches have required polymorphisms that differ among individuals. We report that peptide nucleic acid and locked nucleic acid antisense oligomers that target CAG repeats can preferentially inhibit mutant ataxin-3 and HTT protein expression in cultured cells. Duplex RNAs were less selective than single-stranded oligomers. The activity of the peptide nucleic acids does not involve inhibition of transcription, and differences in mRNA secondary structure or the number of oligomer binding sites may be important. Antisense oligomers that discriminate between wild-type and mutant genes on the basis of repeat length may offer new options for developing treatments for MJD, HD and related hereditary diseases.


The Journal of Pathology | 2012

Silencing disease genes in the laboratory and the clinic

Jonathan K. Watts; David R. Corey

Synthetic nucleic acids are commonly used laboratory tools for modulating gene expression and have the potential to be widely used in the clinic. Progress towards nucleic acid drugs, however, has been slow and many challenges remain to be overcome before their full impact on patient care can be understood. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are the two most widely used strategies for silencing gene expression. We first describe these two approaches and contrast their relative strengths and weaknesses for laboratory applications. We then review the choices faced during development of clinical candidates and the current state of clinical trials. Attitudes towards clinical development of nucleic acid silencing strategies have repeatedly swung from optimism to depression during the past 20 years. Our goal is to provide the information needed to design robust studies with oligonucleotides, making use of the strengths of each oligonucleotide technology. Copyright


Trends in Biotechnology | 1997

Peptide nucleic acids: expanding the scope of nucleic acid recognition.

David R. Corey

Peptide nucleic acids (PNAs) are DNA analogs containing neutral amide backbone linkages. PNAs are stable to degradation by enzymes and hybridize to complementary sequences with higher affinity than analogous DNA oligomers. PNA synthesis employs protocols derived from solid-phase peptide synthesis, making the methodology straightforward and flexible. PNAs are being incorporated into an expanding set of applications, including genome mapping, the identification of mutations and measurement of telomere length. The growth in the popularity of PNAs as a tool for nucleic acid recognition should accelerate as the properties of PNAs become more familiar.


Cell Reports | 2014

RNAi Factors Are Present and Active in Human Cell Nuclei

Keith T. Gagnon; Liande Li; Yongjun Chu; Bethany A. Janowski; David R. Corey

Summary RNAi is widely appreciated as a powerful regulator of mRNA translation in the cytoplasm of mammalian cells. However, the presence and activity of RNAi factors in the mammalian nucleus has been the subject of considerable debate. Here we show that Argonaute-2 (Ago2) and RNAi factors Dicer, TRBP and TRNC6A/GW182 are in the human nucleus and associate together in multi-protein complexes. Small RNAs can silence nuclear RNA and guide site-specific cleavage of the targeted RNA, demonstrating that RNAi can function in the human nucleus. Nuclear Dicer is active and miRNAs are bound to nuclear Ago2, consistent with the existence of nuclear miRNA pathways. Notably, we do not detect loading of duplex small RNAs in nuclear extracts and known loading factors are absent. These results extend RNAi into the mammalian nucleus and suggest that regulation of RNAi via small RNA loading of Ago2 differs between the cytoplasm and the nucleus.


Chemistry & Biology | 1999

Cellular delivery of peptide nucleic acids and inhibition of human telomerase

Susan E. Hamilton; Caria G Simmons; Irfan S. Kathiriya; David R. Corey

BACKGROUND Human telomerase has an essential RNA component and is an ideal target for developing rules correlating oligonucleotide chemistry with disruption of biological function. Similarly, peptide nucleic acids (PNAs), DNA analogs that bind complementary sequences with high affinity, are outstanding candidates for inducing phenotypic changes through hybridization. RESULTS We identify PNAs directed to nontemplate regions of the telomerase RNA that can overcome RNA secondary structure and inhibit telomerase by intercepting the RNA component prior to holoenzyme assembly. Relative potencies of inhibition delineate putative structural domains. We describe a novel protocol for introducing PNAs into eukaryotic cells and report efficient inhibition of cellular telomerase by PNAs. CONCLUSIONS PNAs directed to nontemplate regions are a new class of telomerase inhibitor and may contribute to the development of novel antiproliferative agents. The dependence of inhibition by nontemplate-directed PNAs on target sequence suggests that PNAs have great potential for mapping nucleic acid structure and predictably regulating biological processes. Our simple method for introducing PNAs into cells will not only be useful for probing the complex biology surrounding telomere length maintenance but can be broadly applied for controlling gene expression and functional genomics.

Collaboration


Dive into the David R. Corey's collaboration.

Top Co-Authors

Avatar

Bethany A. Janowski

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jiaxin Hu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Masayuki Matsui

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gary S. Coombs

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith T. Gagnon

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Dwaine A. Braasch

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jing Liu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Edwin L. Madison

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Scott T. Younger

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

Yongjun Chu

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge