Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Hampson is active.

Publication


Featured researches published by David R. Hampson.


The Journal of Neuroscience | 2009

Glutamate Transporter Coupling to Na,K-ATPase

Erin M. Rose; Joseph C.P Koo; Jordan E. Antflick; Syed M. Ahmed; Stephane Angers; David R. Hampson

Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPase inhibitor ouabain on glutamate transporter activity, we postulated that glutamate transporters are directly coupled to Na,K-ATPase and that Na,K-ATPase is an essential modulator of glutamate uptake. Na,K-ATPase was purified from rat cerebellum by tandem anion exchange and ouabain affinity chromatography, and the cohort of associated proteins was characterized by mass spectrometry. The α1–α3 subunits of Na,K-ATPase were detected, as were the glutamate transporters GLAST and GLT-1, demonstrating that glutamate transporters copurify with Na,K-ATPases. The link between glutamate transporters and Na,K-ATPase was further established by coimmunoprecipitation and colocalization. Analysis of the regulation of glutamate transporter and Na,K-ATPase activities was assessed using [3H]d-aspartate, [3H]l-glutamate, and rubidium-86 uptake into synaptosomes and cultured astrocytes. In synaptosomes, ouabain produced a dose-dependent inhibition of glutamate transporter and Na,K-ATPase activities, whereas in astrocytes, ouabain showed a bimodal effect whereby glutamate transporter activity was stimulated at 1 μm ouabain and inhibited at higher concentrations. The effects of protein kinase inhibitors on [3H]d-aspartate uptake indicated the selective involvement of Src kinases, which are probably a component of the Na,K-ATPase/glutamate transporter complex. These findings demonstrate that glutamate transporters and Na,K-ATPases are part of the same macromolecular complexes and operate as a functional unit to regulate glutamatergic neurotransmission.


Natural Toxins | 1998

The activation of glutamate receptors by kainic acid and domoic acid.

David R. Hampson; Jerrie Lynn Manalo

The neurotoxins kainic acid and domoic acid are potent agonists at the kainate and alphaamino-5-methyl-3-hydroxyisoxazolone-4-propionate (AMPA) subclasses of ionotropic glutamate receptors. Although it is well established that AMPA receptors mediate fast excitatory synaptic transmission at most excitatory synapses in the central nervous system, the role of the high affinity kainate receptors in synaptic transmission and neurotoxicity is not entirely clear. Kainate and domoate differ from the natural transmitter, L-glutamate, in their mode of activation of glutamate receptors; glutamate elicits rapidly desensitizing responses while the two neurotoxins elicit non-desensitizing or slowly desensitizing responses at AMPA receptors and some kainate receptors. The inability to produce desensitizing currents and the high affinity for AMPA and kainate receptors are undoubtedly important factors in kainate and domoate-mediated neurotoxicity. Mutagenesis studies on cloned glutamate receptors have provided insight into the molecular mechanisms responsible for these unique properties of kainate and domoate.


European Journal of Pharmacology | 1992

Interaction of domoic acid and several derivatives with kainic acid and AMPA binding sites in rat brain.

David R. Hampson; Xi-Ping Huang; James W. Wells; John A. Walter; Jeffrey L.C. Wright

We have determined the inhibitory potencies of domoic acid and a series of derivatives of domoic acid at kainic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding sites in rat forebrain membranes. These derivatives of domoic acid differed in the configuration, stereochemistry, and degree of saturation of the side chain attached to C-4 of the prolyl ring. The binding data were analyzed in terms of one or two classes of sites as appropriate. Domoic acid and kainic acid displayed similar inhibition constants at [3H]kainic acid sites (IC50 = 5 and 7 nM, respectively). At both kainic acid and AMPA binding sites, all of the compounds tested were less potent than domoic acid itself. At high affinity [3H]kainic acid sites, the derivatives could be categorized into two groups; those with nanomolar affinity and those with micromolar affinity. All members of the former group possessed a side chain with the first double bond intact and in the Z (cis) configuration. The more distal atoms present in the extended side chain of domoic acid did not appear to contribute to the high affinity interaction with the kainic acid receptor. Although all the compounds tested were weaker inhibitors of [3H]AMPA binding compared to [3H]kainic acid binding, there was a high correlation between the rank order of potency of the seven domoic acid derivatives at [3H]kainic acid and at [3H]AMPA binding sites. The inhibition data for kainic acid at [3H]AMPA binding sites were described adequately in terms of a 1-site model, whereas the data for domoic acid required two classes of sites.(ABSTRACT TRUNCATED AT 250 WORDS)


Molecular Pharmacology | 2009

Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures.

Laura K.K. Pacey; Scott P. Heximer; David R. Hampson

Mice lacking the gene encoding fragile X mental retardation protein (FMR1) are susceptible to audiogenic seizures, and antagonists of the group I metabotropic glutamate receptors (mGluRs) have been shown to block seizures in FMR1 knockout mice. We investigated whether the G-protein-inhibitory activity of the regulator of G-protein signaling protein, RGS4, could also alter the susceptibility to audiogenic seizures in FMR1 mice. We were surprised to find that male FMR1/RGS4 double-knockout mice showed reduced susceptibility to audiogenic seizures compared with age-matched FMR1 mice. These data raised the intriguing possibility that loss of RGS4 increased signaling through another G-protein pathway that reduces seizure susceptibility in FMR1 mice. Indeed, administration of the GABAB receptor agonist baclofen to FMR1 mice inhibited seizures, whereas the GABAB receptor antagonist (3-aminopropyl)(cyclohexylmethyl)phosphinic acid (CGP 46381) increased seizure incidence in double-knockout mice but not in wild-type mice. Finally, audiogenic seizures could be induced in wild-type mice by coadministering CGP 46381 and the mGluR5-positive allosteric modulator 3-cyano-N-(1,2 diphenyl-1H-pyrazol-5-yl) benzamide. These data show for the first time that GABAB receptor-mediated signaling antagonizes the seizure-promoting effects of the mGluRs in FMR1 knockout mice and point to the potential therapeutic benefit of GABAB agonists for the treatment of fragile X syndrome.


Journal of Neurochemistry | 2005

Cloning and characterization of a Family C orphan G-protein coupled receptor

Donghui Kuang; Yi Yao; Janice Lam; Robert G. Tsushima; David R. Hampson

Members of the family C receptors within the G‐protein coupled receptor superfamily include the metabotropic glutamate receptors, GABAB receptors, the calcium‐sensing receptor (CaSR), the V2R pheromone receptors, the T1R taste receptors, and a small group of uncharacterized orphan receptors. We have cloned and studied the mouse GPRC6A family C orphan receptor. The open reading frame codes for a protein with highest sequence identity to the fish 5.24 odorant receptor and the mammalian CaSR. The gene structure shows a striking resemblance to that of the CaSR. Results from RT‐PCR analyses showed that mouse GPRC6A mRNA is expressed in mouse brain, skeletal muscle, heart, lung, spleen, kidney, liver, and in the early stage mouse embryo. Immunocytochemical analysis of the cloned mouse GPRC6A cDNA expressed in human embryonic kidney 293 cells demonstrated that GPRC6A was present on the plasma membrane, as well as in the endoplasmic reticulum and nuclear envelope membranes of transfected cells. A chimeric cDNA construct in which the extracellular ligand binding domain of the fish 5.24 amino acid‐activated odorant receptor was ligated to the complementary downstream sequence of the mouse GPRC6A receptor indicated that GPRC6A is coupled to phosphoinositol turnover and release of intracellular calcium. Further studies with mouse GPRC6A expressed in Xenopus laevis ooctyes demonstrated that this receptor possesses a pharmacological profile resembling that of the fish 5.24 odorant receptor. These findings suggest that GPRC6A may function as the receptor component of a novel cellular transmitter system in mammals.


Neuropharmacology | 2010

Early developmental alterations in GABAergic protein expression in fragile X knockout mice

Daniel C. Adusei; Laura K.K. Pacey; Duke Chen; David R. Hampson

Fragile X syndrome is the most common heritable form of mental retardation. It is caused by silencing of the Fmr1 gene and the absence of the encoded protein. The purpose of this study was to examine global protein expression levels of GABA(A) and GABA(B) receptors, and GABAergic enzymes and trafficking proteins in fragile X knockout mice during brain maturation. Quantitative western blotting of homogenates of forebrain revealed that the levels of GABA(A) beta1 and beta3, GABA(B)-R1, NKCC1, KCC2, gephyrin and ubiquilin were not significantly different from wild-type mice at any of the postnatal time points examined. In contrast, the GABA(A) receptor alpha1, beta2, and delta subunits, and the GABA enzymes GABA transaminase and succinic semialdehyde dehydrogenase were down-regulated during postnatal development, while GAD65 was up-regulated in the adult knockout mouse brain. The GABA(A) receptor alpha1 and beta2 subunits displayed a divergent pattern of developmental expression whereby alpha1 was reduced in the immature brain but regained a level of expression similar to wild-type mice by adulthood, while the expression of beta2 was similar to wild-types at postnatal day 5 but reduced at day 12 and in the adult brain. The GABA(A) receptor delta subunit and the GABA catabolic enzymes GABA transaminase and succinic semialdehyde dehydrogenase were simultaneously but transiently decreased only at postnatal day 12. Our results demonstrate that GABA(A) receptor subunits and GABA enzymes display complex patterns of changes during brain development suggesting that dynamic interactions may occur between GABA transmitter levels and GABA receptors in fragile X syndrome.


Molecular Psychiatry | 2015

Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity

Jacob Ellegood; Evdokia Anagnostou; B. A. Babineau; Jacqueline N. Crawley; L. Lin; M. Genestine; Emanuel DiCicco-Bloom; J. K Y Lai; J. A. Foster; O. Peñagarikano; Daniel H. Geschwind; Laura K.K. Pacey; David R. Hampson; C. L. Laliberté; Alea A. Mills; E. Tam; Lucy R. Osborne; M Kouser; F Espinosa-Becerra; Z Xuan; Craig M. Powell; A Raznahan; Diane M. Robins; N. Nakai; J. Nakatani; T. Takumi; M. van Eede; Travis M. Kerr; Christopher L. Muller; Randy D. Blakely

Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1–2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response.


Journal of Biological Chemistry | 1999

Ligand Binding to the Amino-terminal Domain of the mGluR4 Subtype of Metabotropic Glutamate Receptor

Guangming Han; David R. Hampson

The metabotropic glutamate receptor (mGluR) 4 subtype of metabotropic glutamate receptor is a presynaptic receptor that modulates neurotransmitter release. We have characterized the properties of a truncated, epitope-tagged construct containing part of the extracellular amino-terminal domain of mGluR4. The truncated receptor was secreted into the cell culture medium of transfected human embryonic kidney cells. The oligomeric structure of the soluble truncated receptor was assessed by gel electrophoresis. In the presence of high concentrations of a reducing agent, the truncated receptor migrated as a monomer; at lower concentrations of the reducing agent, only higher molecular weight oligomers were observed. Competition binding experiments using the radiolabeled agonist [3H]l-2-amino-4-phosphonobutyric acid revealed that the rank order of potency of metabotropic ligands at the truncated receptor was similar to that of the full-length membrane-bound receptor. However, the truncated receptor displayed higher affinities for agonists and lower affinities for antagonists compared with the full-length receptor. Deglycosylation produced a shift in the relative molecular weight of the soluble protein fromM r = 71,000 to M r = 63,000; deglycosylation had no effect on the binding of [3H]l-2-amino-4-phosphonobutyric acid, indicating that the asparagine-linked carbohydrates are not necessary for agonist binding. These results demonstrate that although the primary determinants of ligand binding to mGluR4 are contained within the first 548 amino acids of the receptor, additional amino acids located downstream of this region may influence the affinity of ligands for the binding site.


Journal of Neurochemistry | 1993

A Comparison of Two Alternatively Spliced Forms of a Metabotropic Glutamate Receptor Coupled to Phosphoinositide Turnover

Darryl S. Pickering; Christian Thomsen; Peter D. Suzdak; E. J. Fletcher; R. Robitaille; M. W. Salter; John F. MacDonald; Xi-Ping Huang; David R. Hampson

Abstract: A comparison of the pharmacological and physiological properties of the metabotropic glutamate 1α and 1β receptors (mGluR1α and mGluR1β) expressed in baby hamster kidney (BHK 570) cells was performed. The mGluR1β receptor is an alternatively spliced form of mGluR1α with a modified carboxy terminus. Immunoblots of membranes from the two cell lines probed with receptor‐specific antipeptide antibodies showed that mGluRIa migrated with an Mr= 154, 000, whereas mGluR1β migrated with an Mr= 96, 000. Immunofluorescence imaging of receptors expressed in BHK 570 cells revealed that the mGluR1α receptor was localized to patches along the plasmalemma and on intracellular membranes surrounding the nucleus, whereas mGluR1β was distributed diffusely throughout the cell. Agonist activation of the mGluR1α and the mGluR1β receptors stimulated phosphoinositide hydrolysis. At both receptors, glutamate, quisqualate, and ibotenate were full agonists, whereas trans‐(+)‐1‐aminocyclopentane‐1, 3‐dicarboxylate appeared to act as a partial agonist. The stimulation of phosphoinositide hydrolysis by mGluR1α showed pertussis toxin‐sensitive and insensitive components, whereas the mGluR1β response displayed only the toxin‐insensitive component. The mGluR1α and mGluR1β receptors also increased intracellular calcium levels by inducing release from intracellular stores. These results indicate that the different carboxy terminal sequences of the two receptors directly influences G protein coupling and subcellular deposition of the receptor polypeptides and suggest that the two receptors may subserve different roles in the nervous system.


Journal of Biological Chemistry | 2006

Activation of Family C G-protein-coupled Receptors by the Tripeptide Glutathione

Minghua Wang; Yi Yao; Donghui Kuang; David R. Hampson

The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the γ-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions.

Collaboration


Dive into the David R. Hampson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Yao

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Arsenault

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge