Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David R. Knop.
Human Gene Therapy | 2011
Terence R. Flotte; Bruce C. Trapnell; Margaret Humphries; Brenna Carey; Roberto Calcedo; Farshid N. Rouhani; Martha Campbell-Thompson; Anthony T. Yachnis; Robert A. Sandhaus; Noel G. McElvaney; Christian Mueller; Louis M. Messina; James M. Wilson; Mark L. Brantly; David R. Knop; Guo-jie Ye; Jeffrey D. Chulay
Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes/kg (n=3 subjects/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.
Journal of Clinical Investigation | 2013
Christian Mueller; Jeffrey D. Chulay; Bruce C. Trapnell; Margaret Humphries; Brenna Carey; Robert A. Sandhaus; Noel G. McElvaney; Louis M. Messina; Qiushi Tang; Farshid N. Rouhani; Martha Campbell-Thompson; Ann Dongtao Fu; Anthony T. Yachnis; David R. Knop; Guo-jie Ye; Mark L. Brantly; Roberto Calcedo; Suryanarayan Somanathan; Lee P. Richman; Robert H. Vonderheide; Maigan A. Hulme; Todd M. Brusko; James M. Wilson; Terence R. Flotte
Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1-AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy.
Human Gene Therapy | 2009
Nathalie Clément; David R. Knop; Barry J. Byrne
The ability of recombinant adeno-associated viral (rAAV) vectors to exhibit minimal immunogenicity and little to no toxicity or inflammation while eliciting robust, multiyear gene expression in vivo are only a few of the salient features that make them ideally suited for many gene therapy applications. A major hurdle for the use of rAAV in sizeable research and clinical applications is the lack of efficient and versatile large-scale production systems. Continued progression toward flexible, scalable production techniques is a prerequisite to support human clinical evaluation of these novel biotherapeutics. This review examines the current state of large-scale production methods that employ the herpes simplex virus type 1 (HSV) platform to produce rAAV vectors for gene delivery. Improvements have substantially advanced the HSV/AAV hybrid method for large-scale rAAV manufacture, facilitating the generation of highly potent, clinical-grade purity rAAV vector stocks. At least one human clinical trial employing rAAV generated via rHSV helper-assisted replication is poised to commence, highlighting the advances and relevance of this production method.
Human Gene Therapy | 2009
Darby Thomas; Lijun Wang; Justine Niamke; Jilin Liu; Wen Kang; Marina M. Scotti; Guo-jie Ye; Gabor Veres; David R. Knop
Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.
Human Gene Therapy | 2011
Jeffrey D. Chulay; Guo-jie Ye; Darby L. Thomas; David R. Knop; Janet M. Benson; Julie A. Hutt; Gensheng Wang; Margaret Humphries; Terence R. Flotte
Recombinant adeno-associated virus (rAAV) vectors offer promise for gene therapy of alpha-1 antitrypsin (AAT) deficiency. A toxicology study in mice evaluated intramuscular injection of an rAAV vector expressing human AAT (rAAV-CB-hAAT) produced using a herpes simplex virus (HSV) complementation system or a plasmid transfection (TFX) method at doses of 3 × 10(11) vg (1.2 × 10(13) vg/kg) for both vectors and 2 × 10(12) vg (8 × 10(13) vg/kg) for the HSV-produced vector. The HSV-produced vector had favorable in vitro characteristics in terms of purity, efficiency of transduction, and hAAT expression. There were no significant differences in clinical findings or hematology and clinical chemistry values between test article and control groups and no gross pathology findings. Histopathological examination demonstrated minimal to mild changes in skeletal muscle at the injection site, consisting of focal chronic interstitial inflammation and muscle degeneration, regeneration, and vacuolization, in vector-injected animals. At the 3 × 10(11) vg dose, serum hAAT levels were higher with the HSV-produced vector than with the TFX-produced vector. With the higher dose of HSV-produced vector, the increase in serum hAAT levels was dose-proportional in females and greater than dose-proportional in males. Vector copy numbers in blood were highest 24 hr after dosing and declined thereafter, with no detectable copies present 90 days after dosing. Antibodies to hAAT were detected in almost all vector-treated animals, and antibodies to HSV were detected in most animals that received the highest vector dose. These results support continued development of rAAV-CB-hAAT for treatment of AAT deficiency.
Human gene therapy. Clinical development | 2015
Guo-jie Ye; Thomas J. Conlon; Kirsten E. Erger; Peter Sonnentag; Alok K. Sharma; Kellie Howard; David R. Knop; Jeffrey D. Chulay
Applied Genetic Technologies Corporation is developing a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of the layers of the retina, which causes poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in RS1-deficient mice. Three groups of male RS1-deficient mice received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (1 × 10(9) or 4 × 10(9) vg/eye) and were sacrificed 30 or 90 days later. The intravitreal injection procedure was well tolerated in all groups, with no test article-related changes in ophthalmic examinations. Two low-dose vector-treated animals had minimally to mildly higher white blood cell counts at day 90. There were no other intergroup differences in hematology or clinical chemistry analyses and no test article-related gross necropsy observations. Microscopic pathology results demonstrated minimal to slight mononuclear cell infiltrates in 80% of vector-injected eyes at day 30 and 20% of vector-injected eyes at day 90. Immunohistochemistry studies showed RS1 labeling of the retina in all vector-treated eyes. At the day 90 sacrifice, there was a decrease in the severity of splitting/disorganization of the inner nuclear layer of the retina in high-dose vector-treated eyes. Biodistribution studies demonstrated vector DNA in vector-injected eyes but not in any nonocular tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS.
Human gene therapy. Clinical development | 2018
Chunjuan Song; Thomas J. Conlon; Wen-Tao Deng; Kirsten E. Coleman; Ping Zhu; Cayrn Plummer; Savitri Mandapati; Mailin Van Hoosear; Kari B. Green; Peter Sonnentag; Alok K. Sharma; Adrian M. Timmers; Paulette Robinson; David R. Knop; William W. Hauswirth; Jeffrey D. Chulay; Mark Shearman; Guo-jie Ye
Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector AGTC-501, also designated AAV2tYF-GRK1-RPGRco, to treat retinitis pigmentosa (RP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. The vector contains a codon-optimized human RPGR cDNA (RPGRco) driven by a photoreceptor-specific promoter (G protein-coupled receptor kinase 1, GRK1) and is packaged in an AAV2 capsid with three surface tyrosine residues changed to phenylalanine (AAV2tYF). We conducted a safety and potency study of this vector administered by subretinal a injection in the naturally occurring RPGR-deficient Rd9 mouse model. Sixty Rd9 mice (20 per group) received a subretinal injection in the right eye of vehicle (control) or AAV2tYF-GRK1-RPGRco at one of two dose levels (4 × 108 or 4 × 109 vg/eye) and were followed for 12 weeks after injection. Vector injections were well tolerated, with no systemic toxicity. There was a trend towards reduced electroretinography b-wave amplitudes in the high vector dose group that was not statistically significant. There were no clinically important changes in hematology or clinical chemistry parameters and no vector-related ocular changes in life or by histological examination. Dose-dependent RPGR protein expression, mainly in the inner segment of photoreceptors and the adjacent connecting cilium region, was observed in all vector-treated eyes examined. Sequence integrity of the codon-optimized RPGR was confirmed by sequencing of PCR-amplified DNA, or cDNA reverse transcribed from total RNA extracted from vector-treated retinal tissues, and by sequencing of RPGR protein obtained from transfected HEK 293 cells. These results support the use of rAAV2tYF-GRK1-RPGRco in clinical studies in patients with XLRP caused by RPGR mutations.
Molecular Therapy | 2016
Guo-jie Ye; Ewa Budzynski; Peter Sonnentag; T. Michael Nork; Paul E. Miller; Leslie McPherson; James N. Ver Hoeve; Leia M. Smith; Tara Arndt Arndt; Savitri Mandapati; Paulette Robinson; Roberto Calcedo; David R. Knop; William W. Hauswirth; Jeffrey D. Chulay
Background: AGTC is developing a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity and absence of color discrimination. Here we report results of a toxicology and biodistribution study of this vector administered by subretinal injection in CNGB3-deficient mice. Methods: Three groups of CNGB3-deficient mice (n= 35 per sex per group) received a subretinal injection in one eye of 1 µL of vehicle (balanced salt solution with 0.014% Tween 20) or rAAV2tYF-PR1.7-hCNGB3 vector at a concentration of 1 × 1012 vg/mL (1 × 109 vg/eye) or 4 × 1012 vg/mL (4 × 109 vg/eye). The other eye was untreated. Ten animals/sex/group were used for toxicology evaluation with ophthalmic examinations and pathological evaluations, 10 animals/sex/group were used for biodistribution evaluation, and 15 animals/sex/group were used for efficacy evaluation. Half the animals in the biodistribution and toxicology groups were euthanized 4 weeks after vector administration and the remaining animals were euthanized 12 weeks after vector administration. For animals in the biodistribution groups, blood for qPCR analysis was obtained on Study Days 3, 8 and at euthanasia. At necropsy, samples of eyes, brain, heart, liver, gall bladder, kidneys, spleen, thymus, lungs, adrenals, ovaries, epididymides and testes were obtained for histopathology (for animals in the toxicology groups) or DNA PCR (for animals in the biodistribution groups). For animals scheduled for efficacy evaluations, electroretinography (ERG) testing included scotopic and photopic tests performed at Week 4, 8, and 12 on each eye and serum was collected at euthanasia for measurement of antibodies to AAV and hCNGB3. Results: There were no test article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated ERG responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group, 31% of animals in the lower dose group, and none of the untreated or vehicle-treated eyes. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia, and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in non-ocular tissue. Conclusions: Subretinal injection of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice was associated with no clinically important toxicology findings, rescue of cone-mediated ERG responses in vector-treated eyes, and vector DNA detection limited primarily to vector-injected eyes. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations. A Phase 1/2 clinical trial evaluating rAAV2tYF-PR1.7-hCNGB3 is scheduled to begin in 2016.
Molecular Therapy | 2016
Guo-jie Ye; Ewa Budzynski; Peter Sonnentag; T. Michael Nork; Paul E. Miller; Alok K. Sharma; James N. Ver Hoeve; Leia M. Smith; Tara Arndt Arndt; Roberto Calcedo; Chantelle Gaskin; Paulette Robinson; David R. Knop; William W. Hauswirth; Jeffrey D. Chulay
Background: AGTC is developing a recombinant AAV vector expressing the human CNGB3 gene for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity and absence of color discrimination. Here we report results of a toxicology and biodistribution study of this vector administered by subretinal injection in cynomolgus macaques. Methods: Three groups of animals (n=2 males and 2 females per group) received a subretinal injection in one eye of 300 µL containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two concentrations (4 × 1011 or 4 × 1012 vg/mL) and were evaluated for safety and biodistribution over a 3-month period prior to euthanasia. Toxicity assessment was based on mortality, clinical observations, body weights, ophthalmic examinations, intraocular pressure (IOP) measurements, electroretinography (ERG), visual evoked potentials (VEP), and clinical and anatomic pathology. Vector shedding and biodistribution was assessed by qPCR analyses. Immune responses to AAV and hCNGB3 were measured by ELISA, Elispot, or neutralization antibody assay for AAV2tYF. Results: There was no evidence of local or systemic toxicity and no changes in IOP, VEP responses, or hematology, coagulation or clinical chemistry parameters and no clinically important changes in ERG responses. Aqueous cells, sometimes with aqueous flare, were observed at the Day 3 evaluation in all groups and generally resolved or were at the mild (1+) levels by Week 4 and absent on Week 8 and thereafter except in one high dose animal. Posterior segment findings consisted of varying degrees of dose-related white vitreous cell, vitreous haze, white retinal perivascular sheathing, and white to grey-white subretinal infiltrates within and outside of the injection site. Vitreous haze resolved by Day 8 in eyes given vehicle control, by Week 4 in the low dose group and by Week 13 in the high dose group. Vitreous cells were observed at the mild (trace or 1+) level in the vehicle control group and resolved by Study Weeks 9 or 13 but persisted through Week 13 in a dose-related fashion in the low and high dose groups. Serum neutralizing antibodies against AAV2tYF were detected in all animals given vector. There were no T cell responses to AAV capsid peptides and no antibody or T cell responses to hCNGB3. Mononuclear cell infiltrates in the vitreous body/optic disc, of minimal intensity, in the vector-injected eye of all animals at both dose levels. All other tissues collected for histopathological examination showed no abnormalities. Results of biodistribution studies demonstrated that the vector did not spread widely or consistently outside the injected eye. High levels of vector DNA were found in vector-injected eyes but minimal or no vector DNA was found in any other tissue. Conclusions: Subretinal injection of rAAV2tYF-PR1.7-hCNGB3 at concentrations of 4 × 1011 or 4 × 1012 vg/mL was associated with a dose-related anterior and posterior segment inflammatory response that improved over time. There was no evidence of systemic toxicity and no changes in IOP, VEP responses, or hematology, coagulation or clinical chemistry parameters and no clinically important changes in ERG responses. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia. A Phase 1/2 clinical trial evaluating rAAV2tYF-PR1.7-hCNGB3 in patients with achromatopsia is scheduled to begin in 2016.
Molecular Therapy | 2015
Guo-jie Ye; Chantelle Gaskin; Charlotte Butts; Royce Threadgill; David R. Knop; Jeffrey D. Chulay
The manufacturing process for rAAV vectors for use in patients with XLRS and ACHM effectively inactivates and removes HSV particles from rAAV vectors produced using an rHSV complementation system in sBHK cells, resulting in greater than a 13.29 log10 reduction in HSV, corresponding to a maximum of amount of rcHSV or replication-incompetent HSV in a single patient dose of 1.54 × 10^-5 under the worst-case estimation, and a maximum of 1.28 × 10^-7 pfu of replication-incompetent HSV when loss of input rHSV during culture of rHSV-infected cells is taken into consideration. Therefore, the risk of HSV-related adverse events in patients receiving rAAV vectors purified in this manner is very low.