David R. McGivern
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David R. McGivern.
Proceedings of the National Academy of Sciences of the United States of America | 2013
You Li; Takahiro Masaki; Daisuke Yamane; David R. McGivern; Stanley M. Lemon
Hepatitis C virus (HCV) replication is dependent on microRNA 122 (miR-122), a liver-specific microRNA that recruits Argonaute 2 to the 5′ end of the viral genome, stabilizing it and slowing its decay both in cell-free reactions and in infected cells. Here we describe the RNA degradation pathways against which miR-122 provides protection. Transfected HCV RNA is degraded by both the 5′ exonuclease Xrn1 and 3′ exonuclease exosome complex, whereas replicating RNA within infected cells is degraded primarily by Xrn1 with no contribution from the exosome. Consistent with this, sequencing of the 5′ and 3′ ends of RNA degradation intermediates in infected cells confirmed that 5′ decay is the primary pathway for HCV RNA degradation. Xrn1 knockdown enhances HCV replication, indicating that Xrn1 decay and the viral replicase compete to set RNA abundance within infected cells. Xrn1 knockdown and miR-122 supplementation have equal, redundant, and nonadditive effects on the rate of viral RNA decay, indicating that miR-122 protects HCV RNA from 5′ decay. Nevertheless, Xrn1 knockdown does not rescue replication of a viral mutant defective in miR-122 binding, indicating that miR-122 has additional yet uncharacterized function(s) in the viral life cycle.
Oncogene | 2011
David R. McGivern; Stanley M. Lemon
The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression of HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cells response to DNA damage. A combination of virus-specific, host genetic, environmental and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC.
Gastroenterology | 2011
Tetsuro Shimakami; Christoph Welsch; Daisuke Yamane; David R. McGivern; MinKyung Yi; Stefan Zeuzem; Stanley M. Lemon
BACKGROUND & AIMS Several small molecule inhibitors of the hepatitis C virus (HCV) nonstructural protein (NS) 3/4A protease have advanced successfully to clinical trials. However, the selection of drug-resistant mutants is a significant issue with protease inhibitors (PIs). A variety of amino acid substitutions in the protease domain of NS3 can lead to PI resistance. Many of these significantly impair the replication fitness of HCV RNA replicons. However, it is not known whether these mutations also adversely affect infectious virus assembly and release, processes in which NS3 also participates. METHODS We studied the impact of 25 previously identified PI-resistance mutations on the capacity of genotype 1a H77S RNA to replicate in cell culture and produce infectious virus. RESULTS Most PI-resistance mutations resulted in moderate loss of replication competence, although several (V36A/L/M, R109K, and D168E) showed fitness comparable to wild type, whereas others (S138T and A156V) were severely impaired both in RNA replication and infectious virus production. Although reductions in RNA replication capacity correlated with decreased yields of infectious virus for most mutations, a subset of mutants (Q41R, F43S, R155T, A156S, and I170A/T) showed greater impairment in their ability to produce virus than predicted from reductions in RNA replication capacity. Detailed examination of the I170A mutant showed no defect in release of virus from cells and no significant difference in specific infectivity of extracellular virus particles. CONCLUSIONS Replicon-based assays might underestimate the loss of fitness caused by PI-resistance mutations, because some mutations in the NS3 protease domain specifically impair late steps in the viral life cycle that involve intracellular assembly of infectious virus.
PLOS Pathogens | 2007
Tsubasa Munakata; Yuqiong Liang; Seungtaek Kim; David R. McGivern; Jon M. Huibregtse; Akio Nomoto; Stanley M. Lemon
Hepatitis C virus (HCV) is a positive-strand RNA virus that frequently causes persistent infections and is uniquely associated with the development of hepatocellular carcinoma. While the mechanism(s) by which the virus promotes cancer are poorly defined, previous studies indicate that the HCV RNA-dependent RNA polymerase, nonstructural protein 5B (NS5B), forms a complex with the retinoblastoma tumor suppressor protein (pRb), targeting it for degradation, activating E2F-responsive promoters, and stimulating cellular proliferation. Here, we describe the mechanism underlying pRb regulation by HCV and its relevance to HCV infection. We show that the abundance of pRb is strongly downregulated, and its normal nuclear localization altered to include a major cytoplasmic component, following infection of cultured hepatoma cells with either genotype 1a or 2a HCV. We further demonstrate that this is due to NS5B-dependent ubiquitination of pRb and its subsequent degradation via the proteasome. The NS5B-dependent ubiquitination of pRb requires the ubiquitin ligase activity of E6-associated protein (E6AP), as pRb abundance was restored by siRNA knockdown of E6AP or overexpression of a dominant-negative E6AP mutant in cells containing HCV RNA replicons. E6AP also forms a complex with pRb in an NS5B-dependent manner. These findings suggest a novel mechanism for the regulation of pRb in which the HCV NS5B protein traps pRb in the cytoplasm, and subsequently recruits E6AP to this complex in a process that leads to the ubiquitination of pRb. The disruption of pRb/E2F regulatory pathways in cells infected with HCV is likely to promote hepatocellular proliferation and chromosomal instability, factors important for the development of liver cancer.
Nature Medicine | 2014
Daisuke Yamane; David R. McGivern; Eliane Wauthier; MinKyung Yi; Victoria J. Madden; Christoph Welsch; Iris Antes; Yahong Wen; Pauline E. Chugh; Charles E. McGee; Douglas G. Widman; Ichiro Misumi; Sibali Bandyopadhyay; Seungtaek Kim; Tetsuro Shimakami; Tsunekazu Oikawa; Jason K. Whitmire; Mark T. Heise; Dirk P. Dittmer; C. Cheng Kao; Stuart M. Pitson; Alfred H. Merrill; Lola M. Reid; Stanley M. Lemon
Oxidative tissue injury often accompanies viral infection, yet there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase-2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals in vitro, suggesting critical regulation of the conformation of the NS3-4A protease and the NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to transmembrane and membrane-proximal residues within these proteins and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain of HCV. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence.
Annual Review of Pathology-mechanisms of Disease | 2009
David R. McGivern; Stanley M. Lemon
Hepatitis C virus (HCV) is the only known RNA virus with an exclusively cytoplasmic life cycle that is associated with cancer. The mechanisms by which it causes cancer are unclear, but chronic immune-mediated inflammation and associated oxidative chromosomal DNA damage probably play a role. Compelling data suggest that the path to hepatocellular carcinoma in chronic hepatitis C shares some important features with the mechanisms of transformation employed by DNA tumor viruses. Interactions of viral proteins with key regulators of the cell cycle, the retinoblastoma-susceptibility protein, p53, and possibly DDX5 and DDX3 lead to enhanced cellular proliferation and may also compromise multiple cell-cycle checkpoints that maintain genomic integrity, thus setting the stage for carcinogenesis. Dysfunctional DNA damage and mitotic spindle checkpoints resulting from these interactions may promote chromosomal instability and leave the hepatocyte unable to control DNA damage caused by oxidative stress mediated by HCV proteins, alcohol, and immune-mediated inflammation.
Gastroenterology | 2014
David R. McGivern; Takahiro Masaki; Sara E. Williford; Paul Ingravallo; Zongdi Feng; Frederick Lahser; Ernest Asante-Appiah; Petra Neddermann; Raffaele De Francesco; Anita Y. M. Howe; Stanley M. Lemon
BACKGROUND & AIMS All-oral regimens combining different classes of direct-acting antivirals (DAA) are highly effective for treatment of patients with chronic hepatitis C. NS5A inhibitors will likely form a component of future interferon-sparing treatment regimens. However, despite their potential, the detailed mechanism of action of NS5A inhibitors is unclear. To study their mechanisms, we compared their kinetics of antiviral suppression with those of other classes of DAA, using the hepatitis C virus genotype 1a cell culture-infectious virus H77S.3. METHODS We performed detailed kinetic analyses of specific steps in the hepatitis C virus life cycle using cell cultures incubated with protease inhibitors, polymerase inhibitors, or NS5A inhibitors. Assays were designed to measure active viral RNA synthesis and steady-state RNA abundance, polyprotein synthesis, virion assembly, and infectious virus production. RESULTS Despite their high potency, NS5A inhibitors were slow to inhibit viral RNA synthesis compared with protease or polymerase inhibitors. By 24 hours after addition of an NS5A inhibitor, polyprotein synthesis was reduced <50%, even at micromolar concentrations. In contrast, inhibition of virus release by NS5A inhibitors was potent and rapid, with onset of inhibition as early as 2 hours. Cells incubated with NS5A inhibitors were rapidly depleted of intracellular infectious virus and RNA-containing hepatitis C virus particles, indicating a block in virus assembly. CONCLUSIONS DAAs that target NS5A rapidly inhibit intracellular assembly of genotype 1a virions. They also inhibit formation of functional replicase complexes, but have no activity against preformed replicase, thereby resulting in slow shut-off of viral RNA synthesis.
Journal of General Virology | 2010
Allan G. N. Angus; David Dalrymple; Steeve Boulant; David R. McGivern; Reginald F. Clayton; Martin J. Scott; Richard Adair; Susan Graham; Ania M. Owsianka; Paul Targett-Adams; Kui Li; Takaji Wakita; John McLauchlan; Stanley M. Lemon; Arvind H. Patel
The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core–DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.
Journal of Virology | 2011
Rathi P. Kannan; Lucinda L. Hensley; Lauren E. Evers; Stanley M. Lemon; David R. McGivern
ABSTRACT Chronic infection with the hepatitis C virus (HCV) is associated with increased risk for hepatocellular carcinoma (HCC). Chronic immune-mediated inflammation is likely to be an important factor in the development of HCV-associated HCC, but direct effects of HCV infection on the host cell cycle may also play a role. Although overexpression studies have revealed multiple interactions between HCV-encoded proteins and host cell cycle regulators and tumor suppressor proteins, the relevance of these observations to HCV-associated liver disease is not clear. We determined the net effect of these interactions on regulation of the cell cycle in the context of virus infection. Flow cytometry of HCV-infected carboxyfluorescein succinimidyl ester-labeled hepatoma cells indicated a slowdown in proliferation that correlated with abundance of viral antigen. A decrease in the proportions of infected cells in G1 and S phases with an accumulation of cells in G2/M phase was observed, compared to mock-infected controls. Dramatic decreases in markers of mitosis, such as phospho-histone H3, in infected cells suggested a block to mitotic entry. In common with findings described in the published literature, we observed caspase 3 activation, suggesting that cell cycle arrest is associated with apoptosis. Differences were observed in patterns of cell cycle disturbance and levels of apoptosis with different strains of HCV. However, the data suggest that cell cycle arrest at the interface of G2 and mitosis is a common feature of HCV infection.
Gastroenterology | 2012
Stanley M. Lemon; David R. McGivern
Although infection with hepatitis C virus (HCV) has become a leading cause of hepatocellular carcinoma, the mechanisms by which it results in carcinogenesis remain a subject of debate. Here, we explore the possibility that HCV replication impairs cellular DNA damage responses, thereby promoting instability of the infected host cell genome, and that HCV exerts a direct cancer-promoting effect in addition to eliciting immune-mediated inflammation and apoptosis of hepatocytes contributing to hepatocellular carcinogenesis.