Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Mitchell is active.

Publication


Featured researches published by David R. Mitchell.


Nature | 2008

Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins

Heymut Omran; Daisuke Kobayashi; Heike Olbrich; Tatsuya Tsukahara; Niki T. Loges; Haruo Hagiwara; Qi Zhang; Gerard Leblond; Eileen O'Toole; Chikako Hara; Hideaki Mizuno; Hiroyuki Kawano; Manfred Fliegauf; Toshiki Yagi; Sumito Koshida; Atsushi Miyawaki; Hanswalter Zentgraf; Horst Seithe; Richard Reinhardt; Yoshinori Watanabe; Ritsu Kamiya; David R. Mitchell; Hiroyuki Takeda

Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.


web science | 2012

Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia

Hannah M. Mitchison; Miriam Schmidts; Niki T. Loges; Judy Freshour; Athina Dritsoula; Robert A. Hirst; Christopher J. O'Callaghan; Hannah Blau; Maha Al Dabbagh; Heike Olbrich; Philip L. Beales; Toshiki Yagi; Huda Mussaffi; Eddie M. K. Chung; Heymut Omran; David R. Mitchell

Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in individuals from families with situs inversus and defects in the assembly of inner and outer dynein arms. Knockdown of dnaaf3 in zebrafish likewise disrupts dynein arm assembly and ciliary motility, causing primary ciliary dyskinesia phenotypes that include hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a PF22-null mutant cannot assemble any outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests that DNAAF3 (PF22) acts at a similar stage as other preassembly proteins, for example, DNAAF2 (also known as PF13 or KTU) and DNAAF1 (also known as ODA7 or LRRC50), in the dynein preassembly pathway. These results support the existence of a conserved, multistep pathway for the cytoplasmic formation of assembly competent ciliary dynein complexes.


Advances in Experimental Medicine and Biology | 2007

The evolution of eukaryotic cilia and flagella as motile and sensory organelles

David R. Mitchell

Eukaryotic cilia and flagella are motile organelles built on a scaffold of doublet microtubules and powered by dynein ATPase motors. Some thirty years ago, two competing views were presented to explain how the complex machinery of these motile organelles had evolved. Overwhelming evidence now refutes the hypothesis that they are the modified remnants of symbiotic spirochaete-like prokaryotes, and supports the hypothesis that they arose from a simpler cytoplasmic microtubule-based intracellular transport system. However, because intermediate stages in flagellar evolution have not been found in living eukaryotes, a clear understanding of their early evolution has been elusive. Recent progress in understanding phylogenetic relationships among present day eukaryotes and in sequence analysis of flagellar proteins have begun to provide a clearer picture of the origins of doublet and triplet microtubules, flagellar dynein motors, and the 9+2 microtubule architecture common to these organelles. We summarize evidence that the last common ancestor of all eukaryotic organisms possessed a 9+2 flagellum that was used for gliding motility along surfaces, beating motility to generate fluid flow, and localized distribution of sensory receptors, and trace possible earlier stages in the evolution of these characteristics.


American Journal of Human Genetics | 2009

Loss-of-Function Mutations in the Human Ortholog of Chlamydomonas reinhardtii ODA7 Disrupt Dynein Arm Assembly and Cause Primary Ciliary Dyskinesia

Philippe Duquesnoy; Estelle Escudier; Laetitia Vincensini; Judy Freshour; Anne-Marie Bridoux; André Coste; Antoine Deschildre; Jacques de Blic; Marie Legendre; Guy Montantin; Henrique Tenreiro; Anne-Marie Vojtek; Céline Loussert; Annick Clement; Denise Escalier; Philippe Bastin; David R. Mitchell; Serge Amselem

Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion. Following a candidate-gene approach based on data from a mutant strain of the biflagellated alga Chlamydomonas reinhardtii carrying an ODA7 defect, we identified four families with a PCD phenotype characterized by the absence of both dynein arms and loss-of-function mutations in the human orthologous gene called LRRC50. Functional analyses performed in Chlamydomonas reinhardtii and in another flagellated protist, Trypanosoma brucei, support a key role for LRRC50, a member of the leucine-rich-repeat superfamily, in cytoplasmic preassembly of dynein arms.


Journal of Cell Biology | 2008

ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery

Noveera T. Ahmed; Chunlei Gao; Ben F. Lucker; Douglas G. Cole; David R. Mitchell

Formation of flagellar outer dynein arms in Chlamydomonas reinhardtii requires the ODA16 protein at a previously uncharacterized assembly step. Here, we show that dynein extracted from wild-type axonemes can rebind to oda16 axonemes in vitro, and dynein in oda16 cytoplasmic extracts can bind to docking sites on pf28 (oda) axonemes, which is consistent with a role for ODA16 in dynein transport, rather than subunit preassembly or binding site formation. ODA16 localization resembles that seen for intraflagellar transport (IFT) proteins, and flagellar abundance of ODA16 depends on IFT. Yeast two-hybrid analysis with mammalian homologues identified an IFT complex B subunit, IFT46, as a directly interacting partner of ODA16. Interaction between Chlamydomonas ODA16 and IFT46 was confirmed through in vitro pull-down assays and coimmunoprecipitation from flagellar extracts. ODA16 appears to function as a cargo-specific adaptor between IFT particles and outer row dynein needed for efficient dynein transport into the flagellar compartment.


Journal of Cell Biology | 2004

Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella

David R. Mitchell; Masako Nakatsugawa

Regulation of motile 9+2 cilia and flagella depends on interactions between radial spokes and a central pair apparatus. Although the central pair rotates during bend propagation in flagella of many organisms and rotation correlates with a twisted central pair structure, propulsive forces for central pair rotation and twist are unknown. Here we compared central pair conformation in straight, quiescent flagella to that in actively beating flagella using wild-type Chlamydomonas reinhardtii and mutants that lack radial spoke heads. Twists occur in quiescent flagella in both the presence and absence of spoke heads, indicating that spoke–central pair interactions are not needed to generate torque for twisting. Central pair orientation in propagating bends was also similar in wild type and spoke head mutant strains, thus orientation is a passive response to bend formation. These results indicate that bend propagation drives central pair rotation and suggest that dynein regulation by central pair–radial spoke interactions involves passive central pair reorientation to changes in bend plane.


Biology of the Cell | 2004

Speculations on the evolution of 9+2 organelles and the role of central pair microtubules

David R. Mitchell

Abstract Motility generated by 9+2 organelles, variably called cilia or flagella, evolved before divergence from the last common ancestor of extant eukaryotes. In order to understand better how motility in these organelles is regulated, evolutionary steps that led to the present 9+2 morphology are considered. In addition, recent advances in our knowledge of flagellar assembly, together with heightened appreciation of the widespread role of cilia in sensory processes, suggest that these organelles may have served multiple roles in early eukaryotic cells. In addition to their function as undulating motility organelles, we speculate that protocilia were the primary determinants of cell polarity and directed motility in early eukaryotes, and that they provided the first defined membrane domain for localization of receptors that allowed cells to respond tactically to environmental cues. Initially, motility associated with these protocilia may have been gliding motility rather than the more complex bend propagation. Once these protocilia became functional motile organelles for beating, we believe that addition of an asymmetric central apparatus, capable of transducing signals to dynein motors and altering beat parameters, provided refined directional control in response to tactic signals. This paper presents hypothesized steps in this evolutionary process, and examples to support these hypotheses.


Current Topics in Developmental Biology | 2008

Chapter 3 How Did the Cilium Evolve

Peter Satir; David R. Mitchell; Gáspár Jékely

The cilium is a characteristic organelle of eukaryotes constructed from over 600 proteins. Bacterial flagella are entirely different. 9 + 2 motile cilia evolved before the divergence of the last eukaryotic common ancestor (LECA). This chapter explores, compares, and contrasts two potential pathways of evolution: (1) via invasion of a centriolar-like virus and (2) via autogenous formation from a pre-existing microtubule-organizing center (MTOC). In either case, the intraflagellar transport (IFT) machinery that is nearly universally required for the assembly and maintenance of cilia derived from the evolving intracellular vesicular transport system. The sensory function of cilia evolved first and the ciliary axoneme evolved gradually with ciliary motility, an important selection mechanism, as one of the driving forces.


Cytoskeleton | 2008

Twenty-Five Dyneins in Tetrahymena: A Re-examination of the Multidynein Hypothesis

David E. Wilkes; Hadley E. Watson; David R. Mitchell; David J. Asai

Dyneins are responsible for essential movements in eukaryotic cells. The motor activity of each dynein complex resides in its complement of heavy chains. In the present study, we examined 136 heavy chain sequences from the completed genomes of 11 diverse model organisms, including examples from Viridiplantae, Excavata, Chromalveolata, and Metazoa. In many cases, we discovered dynein heavy chains previously not identified. For example, Tetrahymena expresses a total of 25 DYH genes rather than the previously identified 14. The Tetrahymena DYH genes are nonaxonemal DYH1 and DYH2; axonemal outer arm alpha, beta, and gamma; axonemal two-headed inner arm 1alpha and 1beta; and 18 single-headed inner arm heavy chains. The heavy chains divide into nine classes; six of these are highly conserved in sequence and number of isoforms in a given organism. The other three are single-headed inner arm dyneins, whose numbers vary significantly in different organisms. These findings lead to two conclusions. One, the last common ancestor of all eukaryotes expressed nine different dynein heavy chains. Two, subsequent to the divergences leading to different organisms, additional dynein heavy chains emerged. These newer dyneins are not well conserved across species and the variation may reflect different motility requirements in different organisms. Together, these results suggest that each of the nine classes of dyneins is functionally distinct, but members within some of the classes are not specialized. An understanding of the relationships among the various dynein heavy chains is important when deducing functions across species.


Journal of Biological Chemistry | 2007

Chlamydomonas Flagellar Outer Row Dynein Assembly Protein Oda7 Interacts with Both Outer Row and I1 Inner Row Dyneins

Judy Freshour; Ruth Yokoyama; David R. Mitchell

We previously found that a mutation at the ODA7 locus in Chlamydomonas prevents axonemal outer row dynein assembly by blocking association of heavy chains and intermediate chains in the cytoplasm. We have now cloned the ODA7 locus by walking in the Chlamydomonas genome from nearby molecular markers, confirmed the identity of the gene by rescuing the mutant phenotype with genomic clones, and identified the ODA7 gene product as a 58-kDa leucine-rich repeat protein unrelated to outer row dynein LC1. Oda7p is missing from oda7 mutant flagella but is present in flagella of other outer row or inner row dynein assembly mutants. However, Oda7 levels are greatly reduced in flagella that lack both outer row dynein and inner row I1 dynein. Biochemical fractionation and rebinding studies support a model in which Oda7 participates in a previously uncharacterized structural link between inner and outer row dyneins.

Collaboration


Dive into the David R. Mitchell's collaboration.

Top Co-Authors

Avatar

Judy Freshour

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Anudariya B. Dean

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon W. Smith

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunlei Gao

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Eileen O'Toole

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge