Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David R. Mole is active.

Publication


Featured researches published by David R. Mole.


Cell | 2001

C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation

Andrew C.R. Epstein; Jonathan M. Gleadle; Luke A. McNeill; Kirsty S. Hewitson; O'Rourke Jf; David R. Mole; Mridul Mukherji; Eric Metzen; Michael I. Wilson; Anu Dhanda; Ya-Min Tian; Norma Masson; Donald L. Hamilton; Panu Jaakkola; Robert Barstead; Jonathan Hodgkin; Patrick H. Maxwell; Christopher W. Pugh; Christopher J. Schofield; Peter J. Ratcliffe

HIF is a transcriptional complex that plays a central role in mammalian oxygen homeostasis. Recent studies have defined posttranslational modification by prolyl hydroxylation as a key regulatory event that targets HIF-alpha subunits for proteasomal destruction via the von Hippel-Lindau ubiquitylation complex. Here, we define a conserved HIF-VHL-prolyl hydroxylase pathway in C. elegans, and use a genetic approach to identify EGL-9 as a dioxygenase that regulates HIF by prolyl hydroxylation. In mammalian cells, we show that the HIF-prolyl hydroxylases are represented by a series of isoforms bearing a conserved 2-histidine-1-carboxylate iron coordination motif at the catalytic site. Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrors the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.


Journal of Biological Chemistry | 2000

Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein.

Matthew E. Cockman; Norma Masson; David R. Mole; Panu Jaakkola; Gin-Wen Chang; Steven Clifford; Er Maher; Christopher W. Pugh; Peter J. Ratcliffe; Patrick H. Maxwell

The von Hippel-Lindau tumor suppressor protein (pVHL) has emerged as a key factor in cellular responses to oxygen availability, being required for the oxygen-dependent proteolysis of α subunits of hypoxia inducible factor-1 (HIF). Mutations in VHL cause a hereditary cancer syndrome associated with dysregulated angiogenesis, and up-regulation of hypoxia inducible genes. Here we investigate the mechanisms underlying these processes and show that extracts from VHL-deficient renal carcinoma cells have a defect in HIF-α ubiquitylation activity which is complemented by exogenous pVHL. This defect was specific for HIF-α among a range of substrates tested. Furthermore, HIF-α subunits were the only pVHL-associated proteasomal substrates identified by comparison of metabolically labeled anti-pVHL immunoprecipitates from proteosomally inhibited cells and normal cells. Analysis of pVHL/HIF-α interactions defined short sequences of conserved residues within the internal transactivation domains of HIF-α molecules sufficient for recognition by pVHL. In contrast, while full-length pVHL and the p19 variant interact with HIF-α, the association was abrogated by further N-terminal and C-terminal truncations. The interaction was also disrupted by tumor-associated mutations in the β-domain of pVHL and loss of interaction was associated with defective HIF-α ubiquitylation and regulation, defining a mechanism by which these mutations generate a constitutively hypoxic pattern of gene expression promoting angiogenesis. The findings indicate that pVHL regulates HIF-α proteolysis by acting as the recognition component of a ubiquitin ligase complex, and support a model in which its β domain interacts with short recognition sequences in HIF-α subunits.


Nature Genetics | 2002

Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia

Sonny O. Ang; Hua Chen; Kiichi Hirota; Victor R. Gordeuk; Jaroslav Jelinek; Yongli Guan; Enli Liu; Adelina I. Sergueeva; Galina Y. Miasnikova; David R. Mole; Patrick H. Maxwell; David W. Stockton; Gregg L. Semenza; Josef T. Prchal

Chuvash polycythemia is an autosomal recessive disorder that is endemic to the mid-Volga River region. We previously mapped the locus associated with Chuvash polycythemia to chromosome 3p25. The gene associated with von Hippel–Lindau syndrome, VHL, maps to this region, and homozygosity with respect to a C→T missense mutation in VHL, causing an arginine-to-tryptophan change at amino-acid residue 200 (Arg200Trp), was identified in all individuals affected with Chuvash polycythemia. The protein VHL modulates the ubiquitination and subsequent destruction of hypoxia-inducible factor 1, subunit α (HIF1α). Our data indicate that the Arg200Trp substitution impairs the interaction of VHL with HIF1α, reducing the rate of degradation of HIF1α and resulting in increased expression of downstream target genes including EPO (encoding erythropoietin), SLC2A1 (also known as GLUT1, encoding solute carrier family 2 (facilitated glucose transporter), member 1), TF (encoding transferrin), TFRC (encoding transferrin receptor (p90, CD71)) and VEGF (encoding vascular endothelial growth factor).


Blood | 2011

High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq

Johannes Schödel; Spyros Oikonomopoulos; Jiannis Ragoussis; Christopher W. Pugh; Peter J. Ratcliffe; David R. Mole

Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.


Journal of Biological Chemistry | 2009

Genome-wide Association of Hypoxia-inducible Factor (HIF)-1α and HIF-2α DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts

David R. Mole; Christine Blancher; Richard R. Copley; Patrick J. Pollard; Jonathan M. Gleadle; Jiannis Ragoussis; Peter J. Ratcliffe

Hypoxia-inducible factor (HIF) controls an extensive range of adaptive responses to hypoxia. To better understand this transcriptional cascade we performed genome-wide chromatin immunoprecipitation using antibodies to two major HIF-α subunits, and correlated the results with genome-wide transcript profiling. Within a tiled promoter array we identified 546 and 143 sequences that bound, respectively, to HIF-1α or HIF-2α at high stringency. Analysis of these sequences confirmed an identical core binding motif for HIF-1α and HIF-2α (RCGTG) but demonstrated that binding to this motif was highly selective, with binding enriched at distinct regions both upstream and downstream of the transcriptional start. Comparison of HIF-promoter binding data with bidirectional HIF-dependent changes in transcript expression indicated that whereas a substantial proportion of positive responses (>20% across all significantly regulated genes) are direct, HIF-dependent gene suppression is almost entirely indirect. Comparison of HIF-1α- versus HIF-2α-binding sites revealed that whereas some loci bound HIF-1α in isolation, many bound both isoforms with similar affinity. Despite high-affinity binding to multiple promoters, HIF-2α contributed to few, if any, of the transcriptional responses to acute hypoxia at these loci. Given emerging evidence for biologically distinct functions of HIF-1α versus HIF-2α understanding the mechanisms restricting HIF-2α activity will be of interest.


Biochemical Journal | 2008

Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha.

Patrick J. Pollard; Christoph Loenarz; David R. Mole; Michael A. McDonough; Jonathan M. Gleadle; Christopher J. Schofield; Peter J. Ratcliffe

The transcription factor HIF (hypoxia-inducible factor) mediates a highly pleiotrophic response to hypoxia. Many recent studies have focused on defining the extent of this transcriptional response. In the present study we have analysed regulation by hypoxia among transcripts encoding human Fe(II)- and 2-oxoglutarate-dependent oxygenases. Our results show that many of these genes are regulated by hypoxia and define two groups of histone demethylases as new classes of hypoxia-regulated genes. Patterns of induction were consistent across a range of cell lines with JMJD1A (where JMJD is Jumonji-domain containing) and JMJD2B demonstrating robust, and JMJD2C more modest, up-regulation by hypoxia. Functional genetic and chromatin immunoprecipitation studies demonstrated the importance of HIF-1alpha in mediating these responses. Given the importance of histone methylation status in defining patterns of gene expression under different physiological and pathophysiological conditions, these findings predict a role for the HIF system in epigenetic regulation.


Journal of Biological Chemistry | 2010

The Lysyl Oxidases LOX and LOXL2 Are Necessary and Sufficient to Repress E-cadherin in Hypoxia INSIGHTS INTO CELLULAR TRANSFORMATION PROCESSES MEDIATED BY HIF-1

Ruth Schietke; Christina Warnecke; Ingrid Wacker; Johannes Schödel; David R. Mole; Valentina Campean; Kerstin Amann; Margarete Goppelt-Struebe; Juergen Behrens; Kai-Uwe Eckardt; Michael S. Wiesener

Hypoxia has been shown to promote tumor metastasis and lead to therapy resistance. Recent work has demonstrated that hypoxia represses E-cadherin expression, a hallmark of epithelial to mesenchymal transition, which is believed to amplify tumor aggressiveness. The molecular mechanism of E-cadherin repression is unknown, yet lysyl oxidases have been implicated to be involved. Gene expression of lysyl oxidase (LOX) and the related LOX-like 2 (LOXL2) is strongly induced by hypoxia. In addition to the previously demonstrated LOX, we characterize LOXL2 as a direct transcriptional target of HIF-1. We demonstrate that activation of lysyl oxidases is required and sufficient for hypoxic repression of E-cadherin, which mediates cellular transformation and takes effect in cellular invasion assays. Our data support a molecular pathway from hypoxia to cellular transformation. It includes up-regulation of HIF and subsequent transcriptional induction of LOX and LOXL2, which repress E-cadherin and induce epithelial to mesenchymal transition. Lysyl oxidases could be an attractive molecular target for cancers of epithelial origin, in particular because they are partly extracellular.


Bioorganic & Medicinal Chemistry Letters | 2003

2-oxoglutarate analogue inhibitors of HIF prolyl hydroxylase.

David R. Mole; Imre Schlemminger; Luke A. McNeill; Kirsty S. Hewitson; Christopher W. Pugh; Peter J. Ratcliffe; Christopher J. Schofield

Hydroxylation of hypoxia-inducible factor, a nuclear transcription factor, is catalysed by iron and 2-oxoglutarate dependent hydroxylases. Various analogues of the 2-oxoglutarate cosubstrate were synthesised and shown to inhibit the activity of human hypoxia-inducible factor-1alpha prolyl hydroxylases in cell-free extracts.


Circulation Research | 2004

Novel Mechanism of Action for Hydralazine Induction of Hypoxia-Inducible Factor-1 α, Vascular Endothelial Growth Factor, and Angiogenesis by Inhibition of Prolyl Hydroxylases

Helen J. Knowles; Ya-Min Tian; David R. Mole; Adrian L. Harris

The vasodilator hydralazine, used clinically in cardiovascular therapy, relaxes arterial smooth muscle by inhibiting accumulation of intracellular free Ca2+ via an unidentified primary target. Collagen prolyl hydroxylase is a known target of hydralazine. We therefore investigated whether inhibition of other members of this enzyme family, namely the hypoxia-inducible factor (HIF)-regulating O2-dependent prolyl hydroxylase domain (PHD) enzymes, could represent a novel mechanism of action. Hydralazine induced rapid and transient expression of HIF-1&agr; and downstream targets of HIF (endothelin-1, adrenomedullin, haem oxygenase 1, and vascular endothelial growth factor [VEGF]) in endothelial and smooth muscle cells and induced endothelial cell-specific proliferation. Hydralazine dose-dependently inhibited PHD activity and induced nonhydroxylated HIF-1&agr;, evidence for HIF stabilization specifically by inhibition of PHD enzyme activity. In vivo, hydralazine induced HIF-1&agr; and VEGF protein in tissue extracts and elevated plasma VEGF levels. In sponge angiogenesis assays, hydralazine increased stromal cell infiltration and blood vessel density versus control animals. Thus, hydralazine activates the HIF pathway through inhibition of PHD activity and initiates a pro-angiogenic phenotype. This represents a novel mechanism of action for hydralazine and presents HIF as a potential target for treatment of ischemic disease.


Oncogene | 2015

Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival

Hani Choudhry; Ashwag Albukhari; M Morotti; Syed Haider; Daniela Moralli; James Smythies; Johannes Schödel; Catherine M. Green; Carme Camps; Francesca M. Buffa; Peter J. Ratcliffe; Jiannis Ragoussis; Adrian L. Harris; David R. Mole

Activation of cellular transcriptional responses, mediated by hypoxia-inducible factor (HIF), is common in many types of cancer, and generally confers a poor prognosis. Known to induce many hundreds of protein-coding genes, HIF has also recently been shown to be a key regulator of the non-coding transcriptional response. Here, we show that NEAT1 long non-coding RNA (lncRNA) is a direct transcriptional target of HIF in many breast cancer cell lines and in solid tumors. Unlike previously described lncRNAs, NEAT1 is regulated principally by HIF-2 rather than by HIF-1. NEAT1 is a nuclear lncRNA that is an essential structural component of paraspeckles and the hypoxic induction of NEAT1 induces paraspeckle formation in a manner that is dependent upon both NEAT1 and on HIF-2. Paraspeckles are multifunction nuclear structures that sequester transcriptionally active proteins as well as RNA transcripts that have been subjected to adenosine-to-inosine (A-to-I) editing. We show that the nuclear retention of one such transcript, F11R (also known as junctional adhesion molecule 1, JAM1), in hypoxia is dependent upon the hypoxic increase in NEAT1, thereby conferring a novel mechanism of HIF-dependent gene regulation. Induction of NEAT1 in hypoxia also leads to accelerated cellular proliferation, improved clonogenic survival and reduced apoptosis, all of which are hallmarks of increased tumorigenesis. Furthermore, in patients with breast cancer, high tumor NEAT1 expression correlates with poor survival. Taken together, these results indicate a new role for HIF transcriptional pathways in the regulation of nuclear structure and that this contributes to the pro-tumorigenic hypoxia-phenotype in breast cancer.

Collaboration


Dive into the David R. Mole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hani Choudhry

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carme Camps

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge